Skip to main content

DNA Topology Review

  • Conference paper
  • First Online:
Advances in the Mathematical Sciences (AWMRS 2017)

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 15))

Included in the following conference series:

  • 535 Accesses

Abstract

DNA holds the instructions for an organism’s development, reproduction, and, ultimately, death. It encodes much of the information a cell needs to survive and reproduce. It is important for inheritance and coding for proteins, and contains the genetic instruction guide for life and its processes. But also, DNA of an organism has a complex and interesting topology. For information retrieval and cell viability, some geometric and topological features of DNA must be introduced, and others quickly removed. Proteins perform these amazing feats of topology at the molecular level; thus, the description and quantization of these protein actions require the language and computational machinery of topology. The use of tangle algebra to model the biological processes that give rise to knotting in DNA provides an excellent example of the application of topological algebra to biology. The tangle algebra approach to knotting in DNA began with the study of the site-specific recombinase Tn3 resolvase. This chapter is a summary of some basic knot theory and biology. We then describe the tangle model developed by Ernst and Sumners using the Tn3 resolvase as an example. We conclude with applications of the tangle model to other biological problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.C. Adams, The Knot Book (American Mathematical Society, Providence, 2004), An elementary introduction to the mathematical theory of knots, Revised reprint of the 1994 original. MR MR2079925 (2005b:57009)

    Google Scholar 

  2. B. Alberts, D. Bray, K. Hopkins, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, 2nd edn. (Garland Science/Taylor & Francis Group, New York, 2003)

    Google Scholar 

  3. J.W. Alexander, Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)

    Article  MathSciNet  Google Scholar 

  4. A.D. Bates, A. Maxwell, Dna Topology (Oxford University Press, Oxford, 2005)

    Google Scholar 

  5. J.M. Berger, S.J. Gamblin, S.C. Harrison, J.C. Wang, Structure and mechanism of DNA topoisomerase ii. Nature 379(6562), 225–232 (1996)

    Article  Google Scholar 

  6. D. Buck, E. Flapan, A topological characterization of knots and links arising from site-specific recombination. J. Phys. A 40(41), 12377–12395 (2007). MR 2394909 (2010h:92064)

    Article  MathSciNet  Google Scholar 

  7. D. Buck, C.V. Marcotte, Tangle solutions for a family of DNA-rearranging proteins. Math. Proc. Camb. Philos. Soc. 139(1), 59–80 (2005). MR 2155505 (2006j:57010)

    Article  MathSciNet  Google Scholar 

  8. D. Buck, K. Valencia, Characterization of knots and links arising from site-specific recombination on twist knots. J. Phys. A Math. Theor. 44(4), 045002 (2011)

    Article  MathSciNet  Google Scholar 

  9. C.R. Calladine, H.R. Drew, B.F. Luisi, A.A. Travers, Understanding DNA, 3rd edn. (Elsevier Academic Press, Amsterdam, 2004)

    Google Scholar 

  10. J.J. Champoux, DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001)

    Article  Google Scholar 

  11. J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, in Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) (Pergamon, Oxford, 1970), pp. 329–358. MR 0258014 (41 #2661)

    Google Scholar 

  12. P.R. Cromwell, Knots and Links (Cambridge University Press, Cambridge, 2004). MR MR2107964 (2005k:57011)

    Google Scholar 

  13. I.K. Darcy, Biological distances on DNA knots and links: applications to XER recombination. J. Knot Theory Ramifications 10(2), 269–294 (2001), Knots in Hellas ‘98, Vol. 2 (Delphi). MR 1822492 (2002m:57008)

    Google Scholar 

  14. I. Darcy, J. Chang, N. Druivenga, C. McKinney, R. Medikonduri, S. Mills, J. Navarra-Madsen, A. Ponnusamy, J. Sweet, T. Thompson, Coloring the Mu transpososome. BMC Bioinf. 7(1), 435 (2006)

    Google Scholar 

  15. I. Darcy, J. Luecke, M. Vazquez, Tangle analysis of difference topology experiments: applications to a mu protein-DNA complex. Algebr. Geom. Topol. 9(4), 2247–2309 (2009)

    Article  MathSciNet  Google Scholar 

  16. P. Dröge, N.R Cozzarelli, Recombination of knotted substrates by tn3 resolvase. Proc. Natl. Acad. Sci. 86(16), 6062–6066 (1989)

    Article  Google Scholar 

  17. E. Eftekhary, Heegaard floer homologies of pretzel knots. arXiv preprint math/0311419.

    Google Scholar 

  18. C. Ernst, D. Sumners, A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Philos. Soc. 108, 489–515 (1990)

    Article  MathSciNet  Google Scholar 

  19. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 12(2), 239–246 (1985)

    Article  MathSciNet  Google Scholar 

  20. F.B. Fuller, Decomposition of the linking number of a closed ribbon: a problem from molecular biology. Proc. Natl. Acad. Sci. U. S. A. 75(8), 3557–3561 (1978). MR 0490004 (58 #9367)

    Article  MathSciNet  Google Scholar 

  21. N.D.F. Grindley, K.L. Whiteson, P.A. Rice, Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75(1), 567–605 (2006), PMID: 16756503

    Article  Google Scholar 

  22. J. Hardin, G.P. Bertoni, L.J. Kleinsmith, Becker’s World of the Cell, 8th edn. (Benjamin Cummings, San Francisco, 2010)

    Google Scholar 

  23. H.C. Ibarra, D.A.L. Navarro, An algorithm based on 3-braids to solve tangle equations arising in the action of gin {DNA} invertase. Appl. Math. Comput. 216(1), 95–106 (2010)

    MathSciNet  MATH  Google Scholar 

  24. M. Jayaram, R.M. Harshey, The Mu transpososome through a topological lens. Crit. Rev. Biochem. Mol. Biol. 41(6), 387–405 (2006)

    Article  Google Scholar 

  25. V.F.R. Jones, A polynomial invariant for knots via von Neumann algebra. Bull. Am. Math. Soc. (N.S.) 12, 103–111 (1985)

    Article  MathSciNet  Google Scholar 

  26. M. Khovanov, A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000)

    Article  MathSciNet  Google Scholar 

  27. S. Kim, I.K. Darcy, Topological Analysis of DNA-Protein Complexes. Mathematics of DNA structure, function and interactions (Springer, Berlin, 2009), pp. 177–194

    Chapter  Google Scholar 

  28. K. Murasugi, Knot Theory and Its Applications (Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, 2008), Translated from the 1993 Japanese original by Bohdan Kurpita, Reprint of the 1996 translation [MR1391727]. MR 2347576

    Google Scholar 

  29. F.J. Olorunniji, D.E. Buck, S.D. Colloms, A.R. McEwan, M.C.M. Smith, W.M. Stark, S.J. Rosser, Gated rotation mechanism of site-specific recombination by ϕc31 integrase. Proc. Natl. Acad. Sci. 109(48), 19661–19666 (2012)

    Article  Google Scholar 

  30. P. Ozsváth, Knot Floer Homology. Advanced Summer School in Knot Theory, May 2009, International Center for Theoretical Physics

    Google Scholar 

  31. S. Pathania, M. Jayaram, R.M. Harshey, Path of DNA within the Mu transpososome. Cell 109(4), 425–436 (2002)

    Article  Google Scholar 

  32. C.R. Price, A Biological Application for the Oriented Skein Relation (ProQuest LLC, Ann Arbor, 2012), Thesis (Ph.D.)–The University of Iowa. MR 3078590

    Google Scholar 

  33. K. Reidemeister, Knotentheorie (Springer, Berlin, 1974), Reprint. MR MR0345089 (49 #9828)

    Book  Google Scholar 

  34. D. Rolfsen, Knots and Links. Mathematics Lecture Series, vol. 7 (Publish or Perish Inc., Houston, 1990), Corrected reprint of the 1976 original. MR MR1277811 (95c:57018)

    Google Scholar 

  35. R.G. Scharein, Interactive topological drawing, Ph.D. thesis, Department of Computer Science, The University of British Columbia, 1998

    Google Scholar 

  36. M.C.M. Smith, H.M. Thorpe, Diversity in the serine recombinases. Mol. Microbiol. 44(2), 299–307 (2002)

    Article  Google Scholar 

  37. D.W. Sumners, Lifting the curtain: using topology to probe the hidden action of enzymes. Not. Am. Math. Soc. 42 (1995), 528–537.

    MathSciNet  MATH  Google Scholar 

  38. D.W. Sumners, C. Ernst, S.J. Spengler, N.R. Cozzarelli, Analysis of the mechanism of DNA recombination using tangles. Q. Rev. Biophys. 28, 253–313 (1995)

    Article  Google Scholar 

  39. L.-P. Tan, G.Y.J. Chen, S.Q. Yao, Expanding the scope of site-specific protein biotinylation strategies using small molecules. Bioorg. Med. Chem. Lett. 14(23), 5735–5738 (2004)

    Article  Google Scholar 

  40. M. Vazquez, D.W. Sumners, Tangle analysis of Gin site-specific recombination. Math. Proc. Camb. Philos. Soc. 136(3), 565–582 (2004). MR 2055047 (2005d:57013)

    Article  MathSciNet  Google Scholar 

  41. J.C. Wang, Untangling the Double Helix (Cold Spring Harbor Laboratory Press, 2009), DNA Entanglement and the Action of the DNA Topoisomerases

    Google Scholar 

  42. S.A. Wasserman, N.R. Cozzarelli, Determination of the stereostructure of the product of tn3 resolvase by a general method. Proc. Natl. Acad. Sci. U. S. A. 82(4), 1079–1083 (1985). (English)

    Article  Google Scholar 

  43. S.A. Wasserman, N.R. Cozzarelli, Biochemical topology: applications to DNA recombination and replication. Science 232(4753), 951–960 (1986). (English)

    Article  Google Scholar 

  44. S.A. Wasserman, J.M. Dungan, N.R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229(4709), 171–174 (1985)

    Article  Google Scholar 

  45. Wikipedia, Deoxyribose—Wikipedia, the free encyclopedia, 2012. Accessed 20 May 2012

    Google Scholar 

  46. Wikipedia, DNA—Wikipedia, the free encyclopedia, 2012. Accessed 20 May 2012

    Google Scholar 

  47. Wikipedia, Nucleic acid—Wikipedia, the free encyclopedia, 2012. Accessed 20 May 2012

    Google Scholar 

  48. G. Witz, A. Stasiak, DNA supercoiling and its role in DNA decatenation and unknotting. Nucl. Acids Res. 38(7), 2119–2133 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candice Reneé Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s) and the Association for Women in Mathematics

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jones, G., Price, C.R. (2018). DNA Topology Review. In: Deines, A., Ferrero, D., Graham, E., Im, M., Manore, C., Price, C. (eds) Advances in the Mathematical Sciences. AWMRS 2017. Association for Women in Mathematics Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-98684-5_8

Download citation

Publish with us

Policies and ethics