Skip to main content

Biodiversity Issues Should Be Better Taken into Account in the Energy Transition

  • Chapter
  • First Online:
Handbook of Climate Change and Biodiversity

Abstract

Climate and biodiversity issues cannot be considered one without the other because of the multiple interactions and interdependencies between them. Solutions for climate mitigation relying on the evolution of the energy sector should take this intertwining into account. The French Foundation for Research on Biodiversity (FRB) and ORÉE, a multi-stakeholder NGO advocating the sharing of good environmental practices among stakeholders, explored potential ways to approach the complexity of climate, energy and biodiversity issues in order to develop sustainable solutions. They have been studying the links and interactions between renewable energy and biodiversity through, among others, a conference organized by FRB and a book published by ORÉE. In both the conference and the book, energy producers and suppliers discussed their level of awareness on the issue and presented measures taken to avoid, reduce or offset biodiversity impacts when installing renewable energy infrastructures. This experience sharing highlighted several ways forward in order to reconcile biodiversity protection with the shift towards sustainable energy. Thus, the need to better take biodiversity into account in the energy transition was voiced both by businesses and the research community. This paper presents the first outcomes of the reflections led at the national level by multiple stakeholders, in order to generate further ideas for research to support the design and implementation of integrated climate change and biodiversity policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brook BW, Bradshaw CJA (2014) Key role for nuclear energy in global biodiversity conservation. Conserv Biol 29(3):702–712. https://doi.org/10.1111/cobi.12433

    Article  Google Scholar 

  • Cavaud D, Coléou Z, Guggemos F, Reynaud D (2016) Chiffres clés des énergies renouvelables. Edition 2016. Document édité par le Service de l’observation et des statistiques. Collection Datalab. Ministère de l’Environnement, de l’Energie et de la Mer en charge des relations internationales sur le climat. La Défense, 76p

    Google Scholar 

  • CBD (2016) The Cancun Declaration on mainstreaming the conservation and sustainable use of biodiversity for well-being. Accessed on 02/11/2017 at https://www.cbd.int/doc/meetings/cop/cop-13/official/cop-13-24-en.pdf

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114(30):E6089–E6096. https://doi.org/10.1073/pnas.1704949114

  • Coly R et al (2017) Études chiroptérologiques dans les dossiers réglementaires éoliens: disponibilité de l’information et conformité avec les recommandations nationales et européennes. Naturae 3:1–10

    Google Scholar 

  • Crooks KR et al (2017) Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. PNAS 114(29):7635–7640. https://doi.org/10.1073/pnas.1705769114

  • Cuypers D et al (2013) The impact of EU consumption on deforestation: Comprehensive analysis of the impact of EU consumption on deforestation. Final report. Environment Commission. Technical Report—2013 – 063. European Union, 348 p. https://doi.org/10.2779/822269

  • Davi H et al (in preparation) Wood fuel boiler in provence as a case-study of Reverse engineering to determine key research questions. In preparation for Ecology and Society

    Google Scholar 

  • European Commission (2015) Environmental implications of increased Reliance of the EU on biomass from the South East US. ENV.B.1/ETU/2014/0043. Report written by A. Strange Olesen, S.L. Bager (COWI, Denmark) & B. Kittler, F. Price & F. Aguilar (Pinchot Institute for Conservation, USA)

    Google Scholar 

  • FRB (2017) Compte-rendu «Journées FRB 2017. Biodiversité et transition énergétique: enquêtes sur des liaisons dangereuses». Paris, 35p. Accessed on 02/11/2017 at http://www.fondationbiodiversite.fr/images/documents/Evenements/CR_JFRB.pdf

  • French Government (2015) LOI n° 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte. Accessed on 2 Nov 2017 at https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000031044385&categorieLien=id

  • French Government (2016) LOI n° 2016-1087 du 8 août 2016 pour la reconquête de la biodiversité, de la nature et des paysages. Accessed on 02 Nov 2017 at https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000033016237&categorieLien=id

  • French Government (2017) Projet de loi mettant fin à la recherche ainsi qu’à l’exploitation des hydrocarbures conventionnels et non conventionnels et portant diverses dispositions relatives à l’énergie et à l’environnement. Accessed on 2 Nov 2017 at http://www.assemblee-nationale.fr/15/projets/pl0155.asp

  • Garcia C, Speelman EN (2017) Landscape approaches, wicked problems and role playing games. Tropenbos International ComMod Workshop. ForDev working papers, 1. 20 p

    Google Scholar 

  • Gasparatos A et al (2017) Renewable energy and biodiversity: implications for transitioning to a green economy. Renew Sustain Energy Rev 70:161–184. https://doi.org/10.1016/j.rser.2016.08.030

    Article  Google Scholar 

  • Hallmann CA et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  CAS  Google Scholar 

  • Henders S, Persson UM, Kastner T (2015) Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ Res Lett 10(12):125012. https://doi.org/10.1088/1748-9326/10/12/125012

    Article  Google Scholar 

  • Havlík P et al (2015) Climate change impacts and mitigation in the developing world: an integrated assessment of the agriculture and forestry sectors. Policy Research working paper; No. WPS 7477. World Bank Group, Washington, D.C, 56p

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB et al (eds) Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp

    Google Scholar 

  • Laurans Y, Rankovic A (2017) Un Plan climat français biodiversité-compatible? Iddri, Issue Brief No 09/17, novembre 2017, 4p

    Google Scholar 

  • Mattmann M, Logar I, Brouwer R (2016) Wind power externalities: a meta-analysis. Ecol Econ 127:23–36. https://doi.org/10.1016/j.ecolecon.2016.04.005

    Article  Google Scholar 

  • Marx G (2017) Le parc éolien français et ses impacts sur l’avifaune. Etude des suivis de mortalité réalisés en France de 1997 à 2015. LPO, Rochefort, p 92

    Google Scholar 

  • McCombie C, Jefferson M (2016) Renewable and nuclear electricity: Comparison of environmental impacts. Energy Policy 96:758–769. https://doi.org/10.1016/j.enpol.2016.03.022

  • Mermet L et al (2004) Les porteurs de projets face à leurs opposants: six critères pour évaluer la concertation en aménagement. Politiques et Management Publics 22(1):1–22. https://doi.org/10.3406/pomap.2004.2829

    Article  Google Scholar 

  • Resilience Alliance (2010) Assessing resilience in social-ecological systems: Workbook for practitioners. Version 2.0. Accessed on 02 Nov 2017 at http://www.resalliance.org/3871.php

  • RTE (2017) Bilan prévisionnel de l’équilibre offre-demande d’électricité en France. Edition 2017. Synthèse. La Défense, 44p

    Google Scholar 

  • Sullivan BL et al (2017) Using open access observational data for conservation action: a case study for birds. Biol Conserv 208:5–14. https://doi.org/10.1016/j.biocon.2016.04.031

    Article  Google Scholar 

  • Tilman D et al (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81. https://doi.org/10.1038/nature22900

    Article  CAS  Google Scholar 

  • Trommetter M (Coord) (2017) Climat et biodiversité. Concilier énergies renouvelables et biodiversité. ORÉE. Entreprises, territoires et environnement, Paris, France, 26p

    Google Scholar 

  • UNEP (2016a) Global guidance for life cycle impact assessment indicators. Frischknecht R and Jolliet O (eds) Volume 1, Guide produced by the UNEP/SETAC Life Cycle Initiative. United Nations Environment Programme, 2016. Paris, France, 166p. ISBN: 978-92-807-3630-4

    Google Scholar 

  • UNEP (2016b) Summary for policy makers. Green energy choices: the benefits, risks and trade-offs of low-carbon technologies for electricity production. Hertwich EG et al (eds) Report of the International Resource Panel. United Nations Environment Programme, 2015. UNESCO, CLD, France, 48p. ISBN: 978-92-807-3490-4

    Google Scholar 

  • Valin H et al (2015) The land use change impact of biofuels consumed in the EU: quantification of area and greenhouse gas impact. Report for the European Commission by Ecofys, IIASA & E4tech. Utrecht, 261 p

    Google Scholar 

  • Verones F et al (2015) Harmonizing the assessment of biodiversity effects from land and water use within LCA. Environ Sci Technol 49(6):3584–3592. https://doi.org/10.1021/es504995r

    Article  CAS  Google Scholar 

  • Zarfl C et al (2015) A global boom in hydropower dam construction. Aquatic Sci 77:161–170. https://doi.org/10.1007/s00027-014-0377-0

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hugo Valin and Anne-Claire Asselin for their useful advice and precisions regarding different parts of this paper. Special thanks to Michel Trommetter who contributed greatly to OREE’s work on renewables and biodiversity. Any misinterpretation or error is due to the authors of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Hallosserie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hallosserie, A., Soubelet, H., Leriche, H., Savin, P., Silvain, JF. (2019). Biodiversity Issues Should Be Better Taken into Account in the Energy Transition. In: Leal Filho, W., Barbir, J., Preziosi, R. (eds) Handbook of Climate Change and Biodiversity. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-98681-4_3

Download citation

Publish with us

Policies and ethics