Skip to main content

Hypotheses from Recent Assessments of Climate Impacts to Biodiversity and Ecosystems in the United States

  • Chapter
  • First Online:
Handbook of Climate Change and Biodiversity

Abstract

Climate change poses multiple threats to biodiversity, and has already caused demonstrable impacts. We summarize key results from a recent national assessment of observed climate change impacts to terrestrial, marine, and freshwater ecosystems in the United States, and place results in the context of commonly articulated hypotheses about ecosystem response to climate change for global implications. Specific impacts we consider include: range shifts; phenological shifts; phenotypic changes; primary production changes; biological invasions; and novel communities. Significant effort has been made recently to incorporate adaptation measures into land and water management at both national and international scales, but the scale of impacts and associated uncertainties pose challenges to existing management institutions. Using commonly articulated hypotheses about climate change, biodiversity, and ecosystem response can provide context for informed decisions at multiple scales and can help to provide a clearer understanding of the ecological and mechanistic linkages between climate change and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcamo J (2005) Ecosystems and human wellbeing: a framework for assessment/Millennium Ecosystem Assessment. Millennium Ecosystem Assessment Board. Island Press, Washington D.C

    Google Scholar 

  • Alofs KM, Jackson DA, Lester NP (2014) Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Biodivers Res 123–136

    Google Scholar 

  • Ardyna M, Babin M, Gosselin M, Devred E, Rainville L et al (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett 41:6207–6212

    Article  Google Scholar 

  • Arrigo KR, Van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:1–6

    Google Scholar 

  • Asch RG (2015) Climate change and decadal shifts in the phenology of larval fishes in the California current ecosystem. Proc Natl Acad Sci 112:4065–4074

    Article  CAS  Google Scholar 

  • Ault TR, Henebry GM, De Beurs KM, Schwartz MD, Betancourt JL et al (2013) The false spring of 2012, earliest in North American record. Trans Am Geophys Union 94:181–182

    Article  Google Scholar 

  • Babaluk JA, Reist JD, Johnson JD, Johnson L (2000) First records of Sockeye (Oncorhynchus nerka) and Pink Salmon (O. gorbuscha) from banks Island and other records of Pacific Salmon in Northwest territories Canada. Arctic 53:161–164

    Article  Google Scholar 

  • Barange M, Merino G, Blanchard JL, Scholtens J, Harle J et al (2014) Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat Clim Change 4:211

    Article  Google Scholar 

  • Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Change Biol 17:2054–2070

    Article  Google Scholar 

  • Beever EA, Hall LE, Varner J, Loosen AE, Dunham JB et al (2017) Behavioral flexibility as a mechanism for coping with climate change. Front Ecol Environ 15:299–308

    Article  Google Scholar 

  • Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP et al (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeoscience 10:6225–6245

    Article  Google Scholar 

  • Boyce DG, Dowd M, Lewis MR, Worm B (2014) Estimating global chlorophyll changes over the past century. Prog Oceanogr 122:163–173

    Article  Google Scholar 

  • Bradley BA, Houghton RA, Mustard JF, Hamburg SP (2006) Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob Change Biol 12:1815–1822

    Article  Google Scholar 

  • Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19:602–614

    Article  CAS  Google Scholar 

  • Brown CJ, Fulton EA, Hobday AJ, Matear RJ, Possingham HP et al (2010) Effects of climate driven primary production change on marine food webs: implications for fisheries and conservation. Glob Change Biol 16:1194–1212

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES et al (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–656

    Article  CAS  Google Scholar 

  • Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP et al (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci 111:3286–3291

    Article  CAS  Google Scholar 

  • Campbell JE, Berry JA, Seibt U, Smith SJ, Montzka SA et al (2017) Large historical growth in global terrestrial gross primary production. Nature 544:84–87

    Article  CAS  Google Scholar 

  • Carpenter SR, Kitchell JF (1992) Global change and freshwater ecosystems. Annu Rev Ecol Syst 23:119–139

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  Google Scholar 

  • Comte L, Buisson L, Daufresne M, Grenouillet G (2013) Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw Biol 58:625–639

    Article  Google Scholar 

  • Concilio AL, Nippert JB, Ehrenfeucht S, Cherwin K, Seastedt TR (2016) Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie. Oecologia 182:899–911

    Article  Google Scholar 

  • Crausbay SD, Ramirez AR, Carter SL, Cross MS, Hall KR et al (2017) Defining ecological drought for the 21st century. Bull Am Meteorol Soc

    Google Scholar 

  • Crozier LG, Hutchings JA (2013) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87

    Article  Google Scholar 

  • Crozier LG, Scheuerell MD, Zabel RW (2011) Using time series analysis to characterize evolutionary and plastic responses to environmental change: a case study of a shift toward earlier migration date in Sockeye salmon. Am Nat 178:755–773

    Article  Google Scholar 

  • Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  CAS  Google Scholar 

  • Ellis D, Vokoun JC (2009) Earlier spring warming of coastal streams and implications for alewife migration timing. North Am J Fish Manag 29:1584–1589

    Article  Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190:249–257

    Article  Google Scholar 

  • Fritz SA, Eronen JT, Schnitzler J, Hof C, Janis CM et al (2016) Twenty-million-year relationship between mammalian diversity and primary productivity. Proc Natl Acad Sci 113:10908–10913

    Article  CAS  Google Scholar 

  • Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the neglected season in climate change research. Trends Ecol Evol 30:169–176

    Article  Google Scholar 

  • Green AL, Fernandes L, Almany G, Abesamis R, McLeod E et al (2014) Designing marine reserves for fisheries management, biodiversity conservation, and climate change adaptation. Coast Manag 42:143–159

    Article  Google Scholar 

  • Groffman PM, Kareiva P, Carter S, Grimm NB, Lawler J et al (2014) Chapter 8: Ecosystems biodiversity, and ecosystem services, pp 195–219. Climate change impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program

    Google Scholar 

  • Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  Google Scholar 

  • Harris L-G, Tyrrell MC (2001) Changing community state in the Gulf of main: synergism between invaders, overfishing and climate change. Biol Invasions 3:9–21

    Article  Google Scholar 

  • Havel JE, Kovalenko KE, Kats LB (2015) Aquatic invasive species: challenges for the future. Hydrobiologia 750:147–170

    Article  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Article  Google Scholar 

  • Henderson ME, Mills KE, Thomas AC, Pershing AJ, Nye JA (2017) Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf. Rev Fish Biol Fish 27:411–424

    Article  Google Scholar 

  • Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima I et al (2010) Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7:621–640

    Article  CAS  Google Scholar 

  • Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539

    Article  Google Scholar 

  • Holbrook JD, Arkle RS, Rachlow JL, Vierling KT, Pilliod DS et al (2016) Occupancy and abundance of predator and prey: implications of the fire-cheatgrass cycle in sagebrush ecosystems. Ecosphere 7

    Google Scholar 

  • Hulme PE (2017) Climate change and biological invasions: evidence, expectations, and response options. Biol Rev 92:1297–1313

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K., Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Jacobson PC, Fang X, Stefan HG, Pereira DL (2013) Protecting cisco (Corego- nus artedi Leseur) oxythermal habitat from climate change: building resilience in deep lakes using a landscape approach. Adv Limnol 64:323–332

    Article  Google Scholar 

  • Jimenez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG et al (2014) Freshwater resources. In: Climate change 2014: impacts, adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 229–269

    Google Scholar 

  • Johnson TB, Evans DO, Evans DO (2011) Size-Dependent winter mortality of young-of-the- year White Perch: climate warming and invasion of the Laurentian Great lakes. Trans Am Fish Soc 119:301–313

    Article  Google Scholar 

  • Jones RN, Patwardhan A, Cohen SJ, Dessai S, Lammel A et al (2014) Foundations for decision making. In climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 195–228

    Google Scholar 

  • Juanes F, Gephard S, Beland KF (2004) Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. Can J Fish Aquat Sci 61:2392–2400

    Article  Google Scholar 

  • Klein ES, Smith SL, Kritzer JP (2017) Effects of climate change on four New England groundfish species. Rev Fish Biol Fish 27:317–338

    Article  Google Scholar 

  • Kleisner KM, Fogarty MJ, Mcgee S, Hare JA, Moret S et al (2017) Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. Prog Oceanogr 153:24–36

    Article  Google Scholar 

  • Kovach RP, Gharrett AJ, Tallmon DA (2012) Genetic change for earlier migration timing in a pink salmon population. Proc Roy Soc B Biol Sci 279:3870–3878

    Article  Google Scholar 

  • Kovach RP, Joyce JE, Echave JD, Lindberg MS, Tallmon DA (2013) Earlier migration timing, decreasing phenotypic variation, and biocomplexity in multiple Salmonid species. PLoS ONE 8

    Google Scholar 

  • Kovach RP, Ellison SC, Pyare S, Tallmon DA (2015a) Temporal patterns in adult salmon migration timing across southeast Alaska. Glob Change Biol 21:1821–1833

    Article  Google Scholar 

  • Kovach RP, Muhlfeld CC, Dunham JB, Letcher BH, Kershner JL (2015b) Impacts of climatic variation on trout: a global synthesis and path forward. Rev Fish Biol Fish 26:135–151

    Article  Google Scholar 

  • Krabbenhoft TJ, Platania SP, Turner TF (2014) Interannual variation in reproductive phenology in a riverine fish assemblage: implications for predicting the effects of climate change and altered flow regimes reproductive readiness. Freshw Biol 59:1744–1754

    Article  Google Scholar 

  • Kurylyk BL, Macquarrie KTB, Linnansaari T, Cunjak RA, Curry RA (2015) Preserving, augmenting, and creating cold-water thermal refugia in rivers: concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8:1095–1108

    Article  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  CAS  Google Scholar 

  • Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O et al (2015) Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences Discuss 12:3731–3824

    Article  Google Scholar 

  • Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann N Y Acad Sci 1162:79–98

    Article  Google Scholar 

  • Lynch AJ, Myers BJE, Chu C, Eby LA, Falke JA et al (2016) Climate change effects on North American inland fish populations and assemblages. Fisheries 41:346–361

    Article  Google Scholar 

  • Lyons J, Zorn T, Stewart J, Seelbach P, Wehrly K et al (2009) Defining and characterizing coolwater streams and their fish assemblages in michigan and North American. J Fish Manag 29:1130–1151

    Article  Google Scholar 

  • McKinney AM, CaraDonna PJ, Inouye DW, Barr B, Bertelsen CD et al (2012) Asynchronous changes in phenology of migrating broad-tailed hummingbirds and their early season nectar resources. Ecology 93:1987–1993

    Article  Google Scholar 

  • McQuatters-Gollop A, Reid PC, Edwards M, Burkill PH, Castellani C et al (2011) Is there a decline in marine phytoplankton? Nature 472:6–7

    Article  CAS  Google Scholar 

  • Melack JM, Dozier J, Goldman CR, Greenland D, Milner AM et al (1997) Effects of climate change on inland waters of the Pacific coastal mountains and Western Great Basin of North America. Hydrol Process 11:971–992

    Article  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717

    Article  Google Scholar 

  • Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14

    Article  Google Scholar 

  • Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci USA 105:16195–16200

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Moran EV, Alexander JM (2014) Evolutionary responses to global change: lessons from invasive species. Ecol Lett 17:637–649

    Article  Google Scholar 

  • Morelli TL, Daly C, Dobrowski SZ, Dulen DM, Ebersole JL et al (2016) Managing climate change refugia for climate adaptation. PLoS ONE 11:1–17

    Article  CAS  Google Scholar 

  • Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E et al (2015) Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Glob Change Biol 21:959–972

    Article  Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC et al (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    Article  CAS  Google Scholar 

  • Mulholland PJ, Best GR, Coutant CC, Hornberger GM, Meyer JL et al (2008) Effects of climate change on freshwater ecosystems of the South-Eastern United States and the Gulf Coast of Mexico. Hydrol Process 11:949–970

    Article  Google Scholar 

  • Myers BJE, Lynch AJ, Bunnell DB, Chu C, Falke JA et al (2017) Global synthesis of the documented and projected effects of climate change on inland fishes. Rev Fish Biol Fish 27:339–361

    Article  Google Scholar 

  • Myers P, Lundrigan BL, Hoffman SMG, Haraminac AP, Seto SH (2009) Climate-induced changes in the small mammal communities of the Northern Great Lakes region. Glob Change Biol 15:1434–1454

    Article  Google Scholar 

  • Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar Ecol Prog Ser 393:111–129

    Article  Google Scholar 

  • Occhipinti-Ambrogi A (2007) Global change and marine communities: alien species and climate change. Mar Pollut Bull 55:342–352

    Article  CAS  Google Scholar 

  • Ostfeld RS, Brunner JL (2015) Climate change and Ixodes tick-borne diseases of humans. Philos Trans Roy Soc B: Biol Sci 370:20140051

    Article  Google Scholar 

  • Otero J, L’Abée-Lund JH, Castro-Santos T, Leonardsson K, Storvik GO et al (2014) Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob Change Biol 20:61–75

    Article  Google Scholar 

  • Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J et al (2008) Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–89

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Paulson D (2001) Recent odonata records from Southern Florida. Int J Odonatol 4:57–69

    Article  Google Scholar 

  • Peer AC, Miller TJ (2014) Climate change, migration phenology, and fisheries management interact with unanticipated consequences. North Am J Fish Manag 34:94–110

    Article  Google Scholar 

  • Pinsky ML, Fogarty M (2012) Lagged social-ecological responses to climate and range shifts in fisheries. Clim Change 115:883–891

    Article  Google Scholar 

  • Polley HW, Briske DD, Morgan JA, Wolter K, Bailey DW et al (2013) Climate change and North American Rangelands: trends, projections, and implications. Rangeland Ecol Manag 66:493–511

    Article  Google Scholar 

  • Post E (2016) Implications of earlier sea ice melt for phenological cascades in Arctic marine food webs. Food Webss 13:60–66

    Article  Google Scholar 

  • Powell EJ, Tyrrell MC, Milliken A, Tirpak JM, Staudinger MD (2017) A synthesis of thresholds for focal species along the US Atlantic and Gulf Coasts: a review of research and applications. Ocean Coast Manag 148:75–88

    Article  Google Scholar 

  • Princé K, Zuckerberg B (2015) Climate change in our backyards: the reshuffling of North America’s winter bird communities. Glob Change Biol 21:572–585

    Article  Google Scholar 

  • Quinn TP, Adams DJ (1996) Environmental changes affecting the migratory timing of American Shad and Sockeye Salmon. Ecology 77:1151–1162

    Article  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  Google Scholar 

  • Reeves MC, Moreno AL, Bagne KE, Running SW (2014) Estimating climate change effects on net primary production of rangelands in the United States. Clim Change 126:429–442

    Article  Google Scholar 

  • Richards RA (2012) Phenological shifts in hatch timing of northern shrimp Pandalus borealis. Mar Ecol Prog Ser 456:149–158

    Article  Google Scholar 

  • Robinson NJ, Valentine SE, Tomillo PS, Saba VS, Spotila JR et al (2014) Multidecadal trends in the nesting phenology of Pacific and Atlantic leatherback turtles are associated with population demography. Endangered Species Res 24:197–206

    Article  Google Scholar 

  • Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc Roy Soc Lond B: Biol Sci 273:2453–2459

    Article  Google Scholar 

  • Romanelli C, Cooper D, Campbell-Lendrum D, Maiero M, Karesh WB et al (2015) Connecting global priorities: biodiversity and human health: a state of knowledge review. World Health Organization and Secretariat for the Convention on Biological Diversity

    Google Scholar 

  • Rykaczewski RR, Dunne JP (2010) Enhanced nutrient supply to the California current ecosystem with global warming and increased stratification in an earth system model. Geophys Res Lett 37

    Google Scholar 

  • Rykaczewski RR, Dunne JP (2011) A measured look at ocean chlorophyll trends. Nature 472:E5

    Article  CAS  Google Scholar 

  • Saba VS, Griffies SM, Anderson WG, Winton M, Alexander MA et al (2016) Enhanced warming of the Northwest Atlantic ocean under climate change. J Geophys Res: Oceans 121:118–132

    Article  Google Scholar 

  • Sachs JD, Baillie JEM, Sutherland WJ, Armsworth PR, Ash N et al (2009) Biodiversity conservation and the millennium development goals. Science 325:1502-1503

    Google Scholar 

  • Schindler ADW, Beaty KG, Fee EJ, Cruikshank DR, Debruyn ER et al (1990) Effects of climatic warming on lakes of the Central Boreal Forest. Science 250:967–970

    Article  CAS  Google Scholar 

  • Secades C, O’Connor B, Brown C, Walpole M (2014) Earth observation for biodiversity monitoring: a review of current approaches and future opportunities for tracking progress towards the Aichi Biodiversity Targets. CBD technical series No. 72

    Google Scholar 

  • Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406

    Article  Google Scholar 

  • Smith KE, Aronson RB, Steffel BV, Amsler MO, Thatje S et al (2017) Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8

    Google Scholar 

  • Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP et al (2013) Poised to prosper? A cross system comparison of climate change effects on native and non native species performance. Ecol Lett 16:261–270

    Article  Google Scholar 

  • Staudinger MD, Grimm NB, Staudt A, Carter SL, Chapin FS et al (2013) Impacts of climate change on biodiversity, ecosystems, and ecosystem services technical input to the 2013 National Climate Assessment

    Google Scholar 

  • Stocker T (2014) The physical science basis. In: Climate change 2013: the physical science basis. Contribution of working group to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Sundby S, Drinkwater KF, Kjesbu OS (2016) The North Atlantic spring-bloom system—where the changing climate meets the winter dark. Frontiers Mar Sci 3:28

    Article  Google Scholar 

  • Swanston C, Janowiak M (2012) Forest adaptation resources: climate change tools and approaches for land managers. General Technical Report NRS-87:120

    Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313

    Article  Google Scholar 

  • Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS et al (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–245

    Article  CAS  Google Scholar 

  • Thomas AC, Pershing AJ, Friedland KD, Nye JA, Mills KE et al (2017) Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf. Elementa Science of the Anthropocene 5

    Google Scholar 

  • Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Change Biol 18:3279–3290

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  Google Scholar 

  • Vancoppenolle M, Bopp L, Madec G, Dunne J, Ilyina T et al (2013) Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Global Biogeochem Cycles 27:605–619

    Article  CAS  Google Scholar 

  • Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM (2010) Ecology of avian influenza viruses in a changing world. Ann N Y Acad Sci 1195:113–128

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob Change Biol 19:2082–2088

    Article  Google Scholar 

  • Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:e2001104

    Article  CAS  Google Scholar 

  • Wood AJM, Collie JS, Hare JA (2009) A comparison between warm-water fish assemblages of Narragansett Bay and those of long Island sound waters. Fish Bull 107:89–100

    Google Scholar 

  • Wuebbles DJ, Fahey DW, Hibbard KA, DeAngelo B, Doherty S et al (2017) Executive summary of the climate science special report: fourth national climate assessment. Washington, D.C

    Google Scholar 

  • Zanden MJV, Casselam JM, Rasmussen JB (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:1997–2000

    Google Scholar 

  • Zhang Y, Susan Moran M, Nearing MA, Ponce Campos GE, Huete AR et al (2013) Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J Geophys Res: Biogeosciences 118:148–157

    Article  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z et al (2016) Greening of the earth and its drivers. Nat Clim Change 6:791–795

    Article  CAS  Google Scholar 

  • Zimova M, Mills LS, Lukacs PM, Mitchell MS (2014) Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proc Roy Soc B: Biol Sci 281:20140029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine A. Rubenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carter, S.L., Lynch, A.J., Myers, B.J.E., Rubenstein, M.A., Thompson, L.M. (2019). Hypotheses from Recent Assessments of Climate Impacts to Biodiversity and Ecosystems in the United States. In: Leal Filho, W., Barbir, J., Preziosi, R. (eds) Handbook of Climate Change and Biodiversity. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-98681-4_22

Download citation

Publish with us

Policies and ethics