Skip to main content

PCA Algorithms in the Visualization of Big Data from Polish Digital Libraries

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 833)

Abstract

The visualization of large data sets from Polish digital libraries requires proper preparation of a comprehensive consolidated data set. Differences in the organizational systems of digital resources, and other factors affecting the heterogeneity of distributed data and metadata, require the use of clustering algorithms. To achieve this goal, the authors decided to use the PCA method and compare it with k-means results. PCA fulfills the condition of efficient size reduction for multidimensional data but is largely sensitive to deviations and differences in stochastic distributions. To eliminate the problem of noise in the input data, the deterministic model in the form of the Langevin function was used first. This leads to the “flattening” of the distribution of factors influencing the data structure. Due to such an approach, the most relevant categories to information systems were distinguished and Polish digital libraries were visualized.

Keywords

  • Digital libraries
  • Object type
  • PCA
  • k-means clustering

This research is sponsored by National Science Center (NCN) under grant: 2013/11/B/HS2/03048/Digital knowledge structure and dynamics analysis by means of visualisation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98678-4_52
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-98678-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Mazurek, C., Werla, M.: Federacja Bibliotek Cyfrowych – studium przypadku. In: Janiak, M., Krakowska, M., Próchnicka, M. (eds.) BIBLIOTEKI CYFROWE, pp. 225–239. SBP, Warszawa (2012). (in polish)

    Google Scholar 

  2. Werla, M.: Metadane dokumentów w bibliotekach cyfrowych (2010). http://lib.psnc.pl/Content/284/CPI-Werla.pdf. Accessed 18 Apr 2018. (in polish)

  3. Calhoun, K.: Exploring Digital Libraries: Foundations, Practice, Prospects. Neal-Schuman, Chicago (2014)

    Google Scholar 

  4. Costello, L.: Title, description, and subject are the most important metadata fields for keyword discoverability. Evid. Based Libr. Inf. Pract. 11(3), 88–90 (2016)

    CrossRef  Google Scholar 

  5. Xie, I., Matusiak, K.: Discover Digital Libraries: Theory and Practice. Elsevier, Amsterdam (2016)

    Google Scholar 

  6. Zavalina, O.L.: Complementarity in subject metadata in large-scale digital libraries: a comparative analysis. Cataloging Classif. Q. 52(1), 77–89 (2014)

    CrossRef  Google Scholar 

  7. Osinska, V., Matusiak, K., Kowalska, M., Malak, P., Bednarek-Michalska, B.: Distribution of date elements and its relationship to the types of digital libraries. J. Librarianships Inf. Sci. 11 (2017)

    Google Scholar 

  8. Osinska, V., Malak, P.: Maps and mapping in scientometrics. In: Goralska, M., Wandel, A. (eds.) Tools and Methods for Analysing the Scientific Literature and Readers, pp. 59–73. WUW, Wrocław (2016)

    Google Scholar 

  9. Schramm, P., Oppenheim, I.: Properties of noise correlation functions of Langevin-like equations. Phys. A Stat. Mech. Appl. 137(1–2), 81–95 (1986)

    CrossRef  MathSciNet  Google Scholar 

  10. Abrahams, E., Keffer, F.: Langevin Function. AccessScience. McGraw-Hill Education (2014)

    Google Scholar 

  11. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    CrossRef  Google Scholar 

  12. Egghe, L., Leydesdorff, L.: The relation between Pearson’s correlation coefficient r and Salton’s cosine measure. JASIST 60(5), 1027–1036 (2009)

    CrossRef  Google Scholar 

  13. Osinska, V., Osinski, G., Komendzinski, T.: Altmetrics and visualisation – the complementary tools for analysing scientific collaboration and behaviour on researchgate. Cult. Educ. 4(110), 105–121 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Osinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Osinski, G., Osinska, V., Malak, P. (2019). PCA Algorithms in the Visualization of Big Data from Polish Digital Libraries. In: Choroś, K., Kopel, M., Kukla, E., Siemiński, A. (eds) Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-319-98678-4_52

Download citation