Hart, E., Ross, P.: GAVEL - a new tool for genetic algorithm visualization. IEEE Trans. Evol. Comput. 5(2), 335–348 (2001)
CrossRef
Google Scholar
Wu, H.-C., Sun, C.-T., Lee, S.-S.: Visualization of evolutionary computation processes: from the perspective of population. In: Proceedings of the Fifth World Congress on Intelligent Control and Automation, pp. 2077–2081. IEEE Xplore, Hangzhou (2004)
Google Scholar
Kerren, A., Egger, T.: EAVis: a visualization tool for evolutionary algorithms. In: IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 299–301. IEEE Xplore, Texas (2005)
Google Scholar
Lutton, E., Fekete, J.D.: Visual analytics and experimental analysis of evolutionary algorithms. INRIA Rapport de recherche 7605 (2011)
Google Scholar
Bullock, S., Bedau, M.A.: Exploring the dynamics of adaptation with evolutionary activity plots. Artif. Life 12(2), 193–197 (2006)
CrossRef
Google Scholar
Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 1, pp. 533–540. Morgan Kaufmann Publishers Inc., San California (1999)
Google Scholar
Lotif, M.: Visualizing the population of meta-heuristics during the optimization process using self-organizing maps. In: IEEE Congress on Evolutionary Computation, pp. 312–319. IEEE Xplore, Beijing (2014)
Google Scholar
Mach, M., Zetakova, Z.: Visualising genetic algorithms: a way through the labyrinth of search space. In: Sincak, P., Vascak, J., Kvasnicak, V., Pospichal, J. (eds.) Intelligent Technologies-Theory and Applications, pp. 279–285. IOS Press, Amsterdam (2002)
Google Scholar
The R Foundation: Comprehensive R Archive Network. The R Project for Statistical Computing (2015). http://www.r-project.org/index.html
Institut de Radioprotection et de Sûreté Nucléaire, WebGL in Shiny. http://trestletechgithub.io/shinyRGL/. Accessed 2013
Pérez, J., Alvarado, L., Almanza, N., Mexicano, A., Zavala, C.: A graphical visualization tool for analyzing the behavior of metaheuristic algorithms. In: Proceedings of ICITSEM, Dubai, UAE, pp. 120–124 (2014)
Google Scholar
Suganthan, P.N., Hansen, N., Liang, J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Nanyang Technological University, Singapore (2005)
Google Scholar
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005)
MATH
Google Scholar
Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)
CrossRef
Google Scholar