Advertisement

Remote Sensing for Maritime Monitoring and Vessel Prompt Identification

  • Marco ReggianniniEmail author
  • Marco Righi
  • Marco Tampucci
  • Luigi Bedini
  • Claudio Di Paola
  • Massimo Martinelli
  • Costanzo Mercurio
  • Emanuele Salerno
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 833)

Abstract

The main purpose of the work described in this paper concerns the development of a platform dedicated to sea surveillance, capable of detecting and identifying illegal maritime traffic. This platform results from the cascade implementation of several image processing algorithms that take as input Radar or Optical maps captured by satellite-borne sensors. More in detail, the processing chain is dedicated to (i) the detection of vessel targets in the input map, (ii) the refined estimation of the vessel most descriptive geometrical features and, finally, (iii) the estimation of the kinematic status of the vessel. This platform will represent a new tool for combating unauthorized fishing, irregular migration and related smuggling activities.

Keywords

Maritime traffic monitoring SAR sensing Optical sensing Ship detection Image segmentation Image classification Wake detection and analysis 

References

  1. 1.
    Crisp, D.J.: The state-of-the-art in ship detection in synthetic aperture radar imagery. Australian Government, Department of Defence, Report DSTO-RR-0272 (2004)Google Scholar
  2. 2.
    Bedini, L., Righi, M., Salerno, E.: Size and heading of SAR-detected ships through the inertia tensor. In: Proceedings of MDPI, vol. 2, no. 2.  https://doi.org/10.3390/proceedings2020097. http://www.mdpi.com/2504-3900/2/2/97
  3. 3.
    Reggiannini, M., Righi, M.: Processing satellite imagery to detect and identify non-collaborative vessels. In: ERCIM News, vol. 108, pp. 25–26 (2017). https://ercim-news.ercim.eu/en108/special/processing-satellite-imagery-to-detect-and-identify-non-collaborative-vessels
  4. 4.
    Reggiannini, M., Bedini, L.: Synthetic aperture radar processing for vessel kinematics estimation. In: Proceedings of MDPI, vol. 2, no. 2.  https://doi.org/10.3390/proceedings2020091. http://www.mdpi.com/2504-3900/2/2/91
  5. 5.
    Allard, Y., Germain, M., Bonneau, O.: Harbour Protection Through Data Fusion Technologies, pp. 243–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ishak, A.B.: A two-dimensional multilevel thresholding method for image segmentation. Appl. Soft Comput. 52, 306–322 (2017)CrossRefGoogle Scholar
  7. 7.
    Askari, F., Zerr, B.: Automatic approach to ship detection in spaceborne synthetic aperture radar imagery: an assessment of ship detection capability using RADARSAT. Technical report SACLANTCEN-SR-338, SACLANT Undersea Research Centre, La Spezia (Italy), December 2000Google Scholar
  8. 8.
    Thomson, W.: On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Proc. R. Soc. Lond. 42, 80–83 (1887)CrossRefGoogle Scholar
  9. 9.
    Zilman, G., Zapolski, A., Marom, M.: The speed and beam of a ship from its wake’s SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2335–2343 (2004)CrossRefGoogle Scholar
  10. 10.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Prentice Hall, Upper Saddle River (2008)Google Scholar
  11. 11.
    Eldhuset, K.: An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions. IEEE Trans. Geosci. Remote Sens. 34(4), 1010–1019 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marco Reggiannini
    • 1
    Email author
  • Marco Righi
    • 1
  • Marco Tampucci
    • 1
  • Luigi Bedini
    • 1
  • Claudio Di Paola
    • 2
  • Massimo Martinelli
    • 1
  • Costanzo Mercurio
    • 2
  • Emanuele Salerno
    • 1
  1. 1.Institute of Information Science and TechnologiesNational Research Council of ItalyPisaItaly
  2. 2.Mapsat S.R.L.BeneventoItaly

Personalised recommendations