Advertisement

Towards Structural Monitoring and 3D Documentation of Architectural Heritage Using UAV

  • Danila Germanese
  • Giuseppe Riccardo Leone
  • Davide Moroni
  • Maria Antonietta PascaliEmail author
  • Marco Tampucci
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 833)

Abstract

This paper describes how Unmanned Aerial Vehicles (UAVs) may support the architectural heritage preservation and dissemination. In detail, this work deals with the long-term monitoring of the crack pattern of historic structures, and with the reconstruction of interactive 3D scene in order to provide both the scholar and the general public with a simple and engaging tool to analyze or visit the historic structure.

Keywords

Crack quantification methodology Crack monitoring Photogrammetry UAV 3D rendering 

Notes

Acknowledgement

This work is being carried out in the framework of the Tuscany Regional Project MOSCARDO (FAR-FAS 2014). The Jetson TX1 embedded processor used for this research was donated by the NVIDIA Corporation.

References

  1. 1.
    Armesto, J., Arias, P., Roca, J., Lorenzo, H.: Monitoring and assessing structural damage in historical buildings. Photogram. Rec. 21, 269–291 (2006)CrossRefGoogle Scholar
  2. 2.
    Benning, W., Görtz, S., Lange, J., Schwermann, R., Chudoba, R.: Development of an algorithm for automatic analysis of deformation of reinforced concrete structures using photogrammetry. VDI Ber. 1757, 411–418 (2003)Google Scholar
  3. 3.
    Cardone, A., Gupta, S., Karnik, M.: A survey of shape similarity assessment algorithms for product desing and manifacturing applications. J. Comput. Inf. Sci. Eng. 3, 109–118 (2003)CrossRefGoogle Scholar
  4. 4.
    Ellenberg, A., Kontsos, A., Bartoli, I., Pradhan, A.: Masonry crack detection application of an unmanned aerial vehicle. In: Proceedings of Computing in Civil and Building Engineering, ASCE 2014 (2014)Google Scholar
  5. 5.
    Eschmann, C., Kuo, C., Kuo, C., Boller, C.: Unmanned aircraft systems for remote building inspection and monitoring. In: 6th European Workshop on Structural Health Monitoring (2012)Google Scholar
  6. 6.
    Georgopoulos, A., Stathopoulou, E.K.: Data acquisition for 3D geometric recording: state of the art and recent innovations, pp. 1–26. Springer (2017)Google Scholar
  7. 7.
    Gruen, A., Akca, D.: Least square 3d surface and curve matching. ISPRS J. Photogram. Remote Sens. 59, 151–174 (2005)CrossRefGoogle Scholar
  8. 8.
    Jahanshahi, M.R., Kelly, J.S., Masri, S.F., Sukhatme, G.S.: A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures. Struct. Infrastruct. Eng. 5(6), 455–486 (2009)CrossRefGoogle Scholar
  9. 9.
    Jahanshahi, M.R., Masri, S.F.: A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation. Smart materials and structures 22(3), 035019 (2013)CrossRefGoogle Scholar
  10. 10.
    Jahanshahi, M.R., Masri, S.F., Padgett, C.W., Sukhatme, G.S.: An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Machine Vis. Appl. 24(2), 227–241 (2011)CrossRefGoogle Scholar
  11. 11.
    Majdik, A.L., Tizedes, L., Bartus, M., Sziranyi, T.: Photogrammetric 3d reconstruction of the old slaughterhouse in budapest. In: 2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) (2016)Google Scholar
  12. 12.
    Munoz-Salinas, R., Marin-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. P. Recog. 73, 158–171 (2018)CrossRefGoogle Scholar
  13. 13.
    Niemeier, W., Riedel, B., Fraser, C., Neuss, H., Stratmann, R., Ziem, E.: New digital crack monitoring system or measuring ad documentation of width of cracks in concrete structures. In: Measuring the Changes: 13th FIG Symposium on Deformation Measurements and Analysis (2008)Google Scholar
  14. 14.
    Nishiyama, S., Minakata, N., Kikuchi, T., Yano, T.: Improved digital photogrammetry technique for crack monitoring. Adv. Eng. Inform. 29(4), 851–858 (2015)CrossRefGoogle Scholar
  15. 15.
    Remondino, F., Campana, S.: 3D Recording and Modelling in Archaeology and Cultural Heritage - Theory and Best Practices. Archaeopress BAR, Oxford (2014)Google Scholar
  16. 16.
    Remondino, F., El-Hakim, S.: Image-based 3d modelling: a review. Photogram. Rec. 21, 269–291 (2006)CrossRefGoogle Scholar
  17. 17.
    Shortis, M.R., Seager, J.W.: A practical target recognition system for close range photogrammetry. Photogram. Rec. 29(147), 337–355 (2014)CrossRefGoogle Scholar
  18. 18.
    Strecha, C., Fransens, R., Gool, L.V.: Wide-baseline stereo from multiple views: a probabilistic account. In: CVPR, pp. 552–559 (2004)Google Scholar
  19. 19.
    Valença, J., Dias-da Costa, D., Júlio, E., Araújo, H., Costa, H.: Automatic crack monitoring using photogrammetry and image processing. Measurement 46(1), 433–441 (2013)CrossRefGoogle Scholar
  20. 20.
    Welsch, W., Heunecke, O.: Models and terminology for the analysis of geodetic monitoring observations. In: FIG 10th International Symposium on Deformation Measurements. International Federation of Surveyors, vol. 25, p. 22 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Danila Germanese
    • 1
  • Giuseppe Riccardo Leone
    • 1
  • Davide Moroni
    • 1
  • Maria Antonietta Pascali
    • 1
    Email author
  • Marco Tampucci
    • 1
  1. 1.Institute of Information Science and TechnologiesNational Research Council of ItalyPisaItaly

Personalised recommendations