Advertisement

Complexity of Decision Problems on Totally Rigid Acyclic Tree Grammars

  • Sebastian Eberhard
  • Gabriel Ebner
  • Stefan Hetzl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11088)

Abstract

Totally rigid acyclic tree grammars (TRATGs) are an emerging grammatical formalism with numerous applications in proof theory and automated reasoning. We determine the computational complexity of several decision problems on TRATGs: membership, containment, disjointness, equivalence, minimization, and the complexity of minimal cover with a fixed number of nonterminals. We relate non-parametric minimal cover to a problem on regular word grammars of unknown complexity.

Notes

Acknowledgments

The authors would like to thank the reviewers for many helpful suggestions which led to a considerable improvement of this paper.

References

  1. 1.
    Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document trees. Inf. Syst. 33(4–5), 456–474 (2008)CrossRefGoogle Scholar
  2. 2.
    Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complexity of grammar-based compression over fixed alphabets. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) Leibniz International Proceedings in Informatics (LIPIcs) 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), vol. 55, pp. 122:1–122:14 (2016)Google Scholar
  3. 3.
    Eberhard, S., Ebner, G., Hetzl, S.: Algorithmic compression of finite tree languages by rigid acyclic grammars. ACM Trans. Comput. Log. 18(4), 26:1–26:20 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Ann. Pure Appl. Log. 166(6), 665–700 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eberhard, S., Hetzl, S.: On the compressibility of finite languages and formal proofs. Inf. Comput. 259, 191–213 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quantified lemmas. J. Autom. Reason. pp. 1–32 (2018)Google Scholar
  7. 7.
    Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 293–301. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_20CrossRefGoogle Scholar
  8. 8.
    Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28332-1_26CrossRefzbMATHGoogle Scholar
  9. 9.
    Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified cuts. Theor. Comput. Sci. 549, 1–16 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hetzl, S., Straßburger, L.: Herbrand-confluence. Log. Methods Comput. Sci. 9(4) (2013)Google Scholar
  11. 11.
    Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Inf. Comput. 209(3), 486–512 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kieffer, J.C., Yang, E.H.: Grammar-based codes: a new class of universal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compression Conference (DCC 1999), pp. 296–305. IEEE Computer Society (1999)Google Scholar
  14. 14.
    Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using repair. Inf. Syst. 38(8), 1150–1167 (2013)CrossRefGoogle Scholar
  15. 15.
    Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)CrossRefGoogle Scholar
  16. 16.
    Storer, J.A., Szymanski, T.G.: The macro model for data compression (extended abstract). In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 30–39. ACM, New York (1978)Google Scholar
  17. 17.
    Storer, J.A., Szymanski, T.G.: Data compression via textural substitution. J. ACM 29(4), 928–951 (1982)CrossRefGoogle Scholar
  18. 18.
    Yamagata, K., Uchida, T., Shoudai, T., Nakamura, Y.: An effective grammar-based compression algorithm for tree structured data. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 383–400. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39917-9_25CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU WienViennaAustria

Personalised recommendations