Advertisement

Intersection Non-emptiness and Hardness Within Polynomial Time

  • Mateus de Oliveira Oliveira
  • Michael Wehar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11088)

Abstract

We establish strong connections between the non-emptiness of intersection problem for two and three DFA’s over a binary alphabet and the triangle finding and 3sum problems. In particular, we introduce efficient reductions from triangle finding to non-emptiness of intersection for two DFA’s over a binary alphabet and from 3sum to non-emptiness of intersection for three DFA’s over a binary alphabet. Additionally, in our main result, we show that for every \(\alpha \ge 2\), non-emptiness of intersection for three DFA’s over a unary alphabet can be solved in \(O(n^{\frac{\alpha }{2}})\) time if and only if triangle finding can be solved in \(O(n^{\alpha })\) time.

Keywords

Intersection non-emptiness Computational complexity Unary automata 

References

  1. 1.
    Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 434–443. IEEE (2014)Google Scholar
  2. 2.
    Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2015, New York, NY, USA, pp. 51–58. ACM (2015)Google Scholar
  3. 3.
    Fernau, H., Krebs, A.: Problems on finite automata and the exponential time hypothesis. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 89–100. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40946-7_8CrossRefzbMATHGoogle Scholar
  4. 4.
    Gajentaan, A., Overmars, M.H.: On a class of \(O(n^2)\) problems in computational geometry. Comput. Geom. 5(3), 165–185 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications. J. Complex. 14(2), 257–299 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite state automata and NL versus NP. Theor. Comput. Sci. 302(1), 257–274 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kasai, T., Iwata, S.: Gradually intractable problems and nondeterministic log-space lower bounds. Math. Syst. Theor. 18(1), 153–170 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kozen, D.: Lower bounds for natural proof systems. FOCS 77, 254–266 (1977)MathSciNetGoogle Scholar
  9. 9.
    Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of regular languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 346–354. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-55808-X_33CrossRefGoogle Scholar
  10. 10.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schneider, S.: Fine-grained connections between exponential and polynomial time. Ph.D. thesis, University of California, San Diego (2017)Google Scholar
  12. 12.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: Proceedings of the 5th Annual ACM Symposium on Theory of Computing, 30 April – 2 May 1973, Austin, Texas, USA, pp. 1–9 (1973)Google Scholar
  13. 13.
    Todd Wareham, H.: The parameterized complexity of intersection and composition operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44674-5_26CrossRefzbMATHGoogle Scholar
  14. 14.
    Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 354–362. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_30CrossRefGoogle Scholar
  15. 15.
    Wehar, M.: On the complexity of intersection non-emptiness problems. Ph.D. thesis, University at Buffalo (2016)Google Scholar
  16. 16.
    Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2), 357–365 (2005). Automata, Languages and Programming: Algorithms and Complexity (ICALP-A 2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp. 887–898. ACM, New York (2012)Google Scholar
  18. 18.
    Williams, V.V.: Hardness of easy problems: basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In: Husfeldt, T., Kanj, I. (eds.) 10th International Symposium on Parameterized and Exact Computation (IPEC 2015), Volume 43 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 17–29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of BergenBergenNorway
  2. 2.Temple UniversityPhiladelphiaUSA

Personalised recommendations