Abstract
Performance is central to processes management and event data provides the most objective source for analyzing and improving performance. Current process mining techniques give only limited insights into performance by aggregating all event data for each process step. In this paper, we investigate process performance of all process behaviors without prior aggregation. We propose the performance spectrum as a simple model that maps all observed flows between two process steps together regarding their performance over time. Visualizing the performance spectrum of event logs reveals a large variety of very distinct patterns of process performance and performance variability that have not been described before. We provide a taxonomy for these patterns and a comprehensive overview of elementary and composite performance patterns observed on several real-life event logs from business processes and logistics. We report on a case study where performance patterns were central to identify systemic, but not globally visible process problems.
Keywords
- Process mining
- Performance analysis
- Visual analytics
This is a preview of subscription content, access via your institution.
Buying options









Notes
- 1.
- 2.
source code and further documentation available at https://github.com/processmining-in-logistics/psm.
- 3.
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)
van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: from the past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 38–52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13094-6_5
van der Aalst, W.M.P., Schonenberg, H., Song, M.: Time prediction based on process mining. Inf. Syst. 36, 450–475 (2011)
van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0_22
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18
Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_7
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information in process discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 204–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_17
Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling duplicated tasks in process discovery by refining event labels. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_6
Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving batch organisation of work insights from event logs. Decis. Support Syst. 100, 119–128 (2017)
Maruster, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl. Inf. Syst. 21(3), 267–297 (2009)
Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. Computing 1–27 (2018). https://doi.org/10.1007/s00607-018-0593-x
Pufahl, L., Bazhenova, E., Weske, M.: Evaluating the performance of a batch activity in process models. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 277–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_24
Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_2
Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)
Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34, 305–327 (2009)
Senderovich, A., et al.: Data-driven performance analysis of scheduled processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 35–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_3
Senderovich, A., Weidlich, M., Gal, A.: Temporal network representation of event logs for improved performance modelling in business processes. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_1
Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)
Shrestha, A., Miller, B., Zhu, Y., Zhao, Y.: Storygraph: extracting patterns from spatio-temporal data. In: ACM SIGKDD Workshop IDEA 2013, pp. 95–103. ACM (2013)
Song, M., van der Aalst, W.M.: Supporting process mining by showing events at a glance. In: Proceedings of the 17th Annual Workshop on Information Technologies and Systems (WITS), pp. 139–145 (2007)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Wynn, M.T., et al.: ProcessProfiler3D: a visualisation framework for log-based process performance comparison. Decis. Support Syst. 100, 93–108 (2017)
Acknowledgements
The research leading to these results has received funding from Vanderlande Industries in the project “Process Mining in Logistics”. We thank Elena Belkina for support in the tool development.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Denisov, V., Fahland, D., van der Aalst, W.M.P. (2018). Unbiased, Fine-Grained Description of Processes Performance from Event Data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds) Business Process Management. BPM 2018. Lecture Notes in Computer Science(), vol 11080. Springer, Cham. https://doi.org/10.1007/978-3-319-98648-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-98648-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98647-0
Online ISBN: 978-3-319-98648-7
eBook Packages: Computer ScienceComputer Science (R0)