Skip to main content

Other Rare Monogenic Autoinflammatory Diseases

  • Chapter
  • First Online:
Textbook of Autoinflammation

Abstract

Over the past decade, major advances have been m`ade in understanding the molecular and cellular bases leading to autoinflammatory diseases, and a number of very rare entities have been described. Next-generation sequencing technologies led to the rapid identification of a number of additional genes responsible for syndromes observed in only a very small number of families or in sporadic cases. The identification of all these new genes and associated molecular pathways underlines that activation of interleukin (IL)-1β signaling is far from being the only pathogenic process involved in autoinflammatory disorders. Genetic defects found in patients with rare monogenic autoinflammatory diseases might also facilitate the study of common autoinflammatory diseases with a genetic component. Since these disorders affect multiple organs with potentially severe complications, management of patients is complex and warrants a multidisciplinary approach. Finally, it is necessary to translate discoveries of the pathophysiology of these conditions into more effective therapies, since the choice of therapeutic options often remains empirical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALPS:

Autoimmune lymphoproliferative syndrome

ASC:

Apoptosis-associated speck-like protein containing a CARD

CAPS:

Cryopyrin-associated periodic syndrome

CARD:

C-terminal caspase activation and recruitment domain

CNS:

Central nervous system

CRP:

C-reactive protein

CYLD:

Cylindromatosis

DAMP:

Danger-associated molecular pattern

DMARDs:

Disease-modifying anti-rheumatic drugs

DUB:

Deubiquitinating enzymes

EDA-ID:

Ectodermal dysplasia with anhydrosis with immunodeficiency

ESR:

Erythrocyte sedimentation rate

FCAS:

Familial cold autoinflammatory syndrome

FIIND:

Function-to-find domain

FKLC:

Familial keratosis lichenoides chronica

FMF:

Familial Mediterranean fever

GSDMD:

Gasdermin D

GVHD:

Graft versus host disease

HA20:

Haploinsufficiency of A20

HLH:

Hemophagocytic lymphohistiocytosis

IBD:

Inflammatory bowel disease

IFN:

Interferon

IKK:

IκB kinase

IL:

Interleukin

IL-1Ra:

IL-1 receptor antagonist

KGF:

Keratinocyte growth factor

LRR:

Leucine-rich repeat

LUBAC:

Linear ubiquitin assembly chain complex

MAS:

Macrophage activation syndrome

MSPC:

Multiple self-healing palmoplantar carcinoma

NAIAD:

NLRP1-associated autoinflammation with arthritis and dyskeratosis

NBS:

Nucleotide binding site

NEMO:

NF-κB essential modulator

NF-κB:

Nuclear factor kappa B

NLR:

NOD-like receptor

NLRC4:

NOD-like receptor family CARD domain containing 4

NLRP1:

NOD-like receptor family pyrin domain containing 1

NLRP12:

NOD-like receptor family pyrin domain containing 12

NLRP12AD:

NLRP12-associated disorder

NOD:

Nucleotide-binding oligomerization domain

ORAS:

Otulin-related autoinflammatory syndrome

PAAND:

Pyrin-associated autoinflammation with neutrophilic dermatosis

PAMP:

Pathogen-associated molecular pattern

PAPA:

Pyogenic arthritis, pyoderma gangrenosum, acne

PBMC:

Peripheral blood mononuclear cell

PSTPIP:

Proline-serine-threonine phosphatase interacting protein

PYD:

Pyrin domain

RIG:

Retinoic acid-inducible gene

RIP:

Receptor interacting protein 1

RLR:

RIG-I-like receptor

RNP:

Ribonuclear protein

SCC:

Squamous cell carcinoma

TANK:

TRAF associated NFκB activator

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TNFRSF11A:

Tumor necrosis factor receptor superfamily member 11a

TRAF:

Tumor necrosis factor receptor-associated factors

TRAPS:

Tumor necrosis factor receptor-associated periodic syndrome

References

  1. Jeru I, Duquesnoy P, Fernandes-Alnemri T, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105(5):1614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Borghini S, Tassi S, Chiesa S, et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 2011;63(3):830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeru I, Le Borgne G, Cochet E, et al. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 2011;63(5):1459–64.

    Article  CAS  PubMed  Google Scholar 

  4. Rusmini M, Federici S, Caroli F, et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis. 2016;75(8):1550–7.

    Article  CAS  PubMed  Google Scholar 

  5. Xia X, Dai C, Zhu X, et al. Identification of a novel NLRP12 nonsense mutation (Trp408X) in the extremely rare disease FCAS by exome sequencing. PLoS One. 2016;11(6):e0156981.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Pieri C, Vuch J, Athanasakis E, et al. F402L variant in NLRP12 in subjects with undiagnosed periodic fevers and in healthy controls. Clin Exp Rheumatol. 2014;32(6):993–4.

    PubMed  Google Scholar 

  7. Kostik MM, Suspitsin EN, Guseva MN, et al. Multigene sequencing reveals heterogeneity of NLRP12-related autoinflammatory disorders. Rheumatol Int. 2018;38(5):887–93.

    Article  CAS  PubMed  Google Scholar 

  8. Borte S, Celiksoy MH, Menzel V, et al. Novel NLRP12 mutations associated with intestinal amyloidosis in a patient diagnosed with common variable immunodeficiency. Clin Immunol. 2014;154(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277(33):29874–80.

    Article  CAS  PubMed  Google Scholar 

  10. Vladimer GI, Weng D, Paquette SW, et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity. 2012;37(1):96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lich JD, Williams KL, Moore CB, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007;178(3):1256–60.

    Article  CAS  PubMed  Google Scholar 

  12. Jeru I, Hentgen V, Normand S, et al. Role of interleukin-1beta in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy. Arthritis Rheum. 2011;63(7):2142–8.

    Article  CAS  PubMed  Google Scholar 

  13. Soler VJ, Tran-Viet KN, Galiacy SD, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50(4):246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhong FL, Mamaï O, Sborgi L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell. 2016;167(1):187–202.. e17

    Article  CAS  PubMed  Google Scholar 

  15. Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8.

    Article  CAS  PubMed  Google Scholar 

  16. Masters SL, Lagou V, Jéru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8(332):332ra45.

    Article  PubMed  Google Scholar 

  17. Moghaddas F, Llamas R, De Nardo D, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever. Ann Rheum Dis. 2017;76(12):2085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Consortium TIF. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell. 1997;90(4):797–807.

    Article  Google Scholar 

  19. Consortium TFF. A candidate gene for familial Mediterranean fever. Nat Genet. 1997;17(1):25–31.

    Article  Google Scholar 

  20. Centola M, Wood G, Frucht DM, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95(10):3223–31.

    CAS  PubMed  Google Scholar 

  21. Diaz A, Hu C, Kastner DL, et al. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum. 2004;50(11):3679–89.

    Article  CAS  PubMed  Google Scholar 

  22. Yu JW, Wu J, Zhang Z, et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13(2):236–49.

    Article  CAS  PubMed  Google Scholar 

  23. Jeru I, Papin S, L’hoste S, et al. Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 2005;52(6):1848–57.

    Article  CAS  PubMed  Google Scholar 

  24. Wise CA, Gillum JD, Seidman CE, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11(8):961–9.

    Article  CAS  PubMed  Google Scholar 

  25. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  26. Jeru I, Cochet E, Duquesnoy P, et al. Brief report: involvement of TNFRSF11A molecular defects in autoinflammatory disorders. Arthritis Rheumatol. 2014;66(9):2621–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hanada R, Leibbrandt A, Hanada T, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462(7272):505–9.

    Article  CAS  PubMed  Google Scholar 

  28. Franchi L, Amer A, Body-Malapel M, et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol. 2006;7(6):576–82.

    Article  CAS  PubMed  Google Scholar 

  29. Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569–75.

    Article  CAS  PubMed  Google Scholar 

  30. Rauch I, Deets KA, Ji DX, et al. NAIP-NLRC4 Inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of Caspase-1 and -8. Immunity. 2017;46(4):649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.

    Article  CAS  PubMed  Google Scholar 

  32. Diebolder CA, Halff EF, Koster AJ, Huizinga EG, Koning RI. Cryoelectron tomography of the NAIP5/NLRC4 Inflammasome: implications for NLR activation. Structure. 2015;23(12):2349–57.

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Yan C, Liu P, et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science. 2013;341(6142):172–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tenthorey JL, Haloupek N, López-Blanco JR, et al. The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science. 2017;358(6365):888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Chen S, Ruan J, et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 2015;350(6259):404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211(12):2385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bracaglia C, Prencipe G, Gatto A, et al. Anti interferon-gamma (IFN gamma) monoclonal antibody treatment in a child with NLRC4-related disease and severe hemophagocytic lymphohistiocytosis (HLH). Pediatr Blood Cancer. 2015;62:S123.

    Article  Google Scholar 

  40. Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–59.

    Article  CAS  PubMed  Google Scholar 

  41. Romberg N, Vogel TP, Canna SW. NLRC4 inflammasomopathies. Curr Opin Allergy Clin Immunol. 2017;17(6):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johansson A, Eriksson N, Becker RC, et al. NLRC4 inflammasome is an important regulator of Interleukin-18 levels in patients with acute coronary syndromes: genome-wide association study in the PLATelet inhibition and patient outcomes trial (PLATO). Circ Cardiovasc Genet. 2015;8(3):498–506.

    Article  CAS  PubMed  Google Scholar 

  43. Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011;477(7366):592–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reyes Ruiz VM, Ramirez J, Naseer N, et al. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2017;114(50):13242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Case CL, Shin S, Roy CR. Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun. 2009;77(5):1981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. von Moltke J, Trinidad NJ, Moayeri M, et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature. 2012;490(7418):107–11.

    Article  Google Scholar 

  47. Wang X, Shaw DK, Hammond HL, et al. The prostaglandin E2-EP3 receptor axis regulates Anaplasma phagocytophilum-mediated NLRC4 inflammasome activation. PLoS Pathog. 2016;12(8):e1005803.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Man SM, Hopkins LJ, Nugent E, et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A. 2014;111(20):7403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qu Y, Misaghi S, Newton K, et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. 2016;213(6):877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442–55.

    Article  CAS  PubMed  Google Scholar 

  51. Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–701.

    Article  CAS  PubMed  Google Scholar 

  52. Liang J, Alfano DN, Squires JE, et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr Dev Pathol. 2017;20(6):498–505.

    Article  PubMed  Google Scholar 

  53. Volker-Touw CM, de Koning HD, Giltay JC, et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 2017;176(1):244–8.

    Article  CAS  PubMed  Google Scholar 

  54. Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  55. Hanson EP, Monaco-Shawver L, Solt LA, et al. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122(6):1169–77.. e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keller MD, Petersen M, Ong P, et al. Hypohidrotic ectodermal dysplasia and immunodeficiency with coincident NEMO and EDA mutations. Front Immunol. 2011;2:61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Miot C, Imai K, Imai C, et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood. 2017;130(12):1456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takada H, Nomura A, Ishimura M, Ichiyama M, Ohga S, Hara T. NEMO mutation as a cause of familial occurrence of Behcet’s disease in female patients. Clin Genet. 2010;78(6):575–9.

    Article  CAS  PubMed  Google Scholar 

  59. Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446(7135):557–61.

    Article  CAS  PubMed  Google Scholar 

  60. Nenci A, Huth M, Funteh A, et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet. 2006;15(4):531–42.

    Article  CAS  PubMed  Google Scholar 

  61. Zilberman-Rudenko J, Shawver LM, Wessel AW, et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-kappaB activation and autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113(6):1612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mancini AJ, Lawley LP, Uzel G. X-linked ectodermal dysplasia with immunodeficiency caused by NEMO mutation: early recognition and diagnosis. Arch Dermatol. 2008;144(3):342–6.

    Article  PubMed  Google Scholar 

  63. Cheng LE, Kanwar B, Tcheurekdjian H, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132(1):124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pachlopnik Schmid JM, Junge SA, Hossle JP, et al. Transient hemophagocytosis with deficient cellular cytotoxicity, monoclonal immunoglobulin M gammopathy, increased T-cell numbers, and hypomorphic NEMO mutation. Pediatrics. 2006;117(5):e1049–56.

    Article  PubMed  Google Scholar 

  65. Tono C, Takahashi Y, Terui K, et al. Correction of immunodeficiency associated with NEMO mutation by umbilical cord blood transplantation using a reduced-intensity conditioning regimen. Bone Marrow Transplant. 2007;39(12):801–4.

    Article  CAS  PubMed  Google Scholar 

  66. Makris C, Godfrey VL, Krähn-Senftleben G, et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell. 2000;5(6):969–79.

    Article  CAS  Google Scholar 

  67. Yates T, Wright B, Bauer C. Difficulty finding NEMO: functional pathways to sequencing. J Allergy Clin Immunol. 2017;139(2):AB113.

    Article  Google Scholar 

  68. Chandrakasan S, Marsh RA, Uzel G, Holland SM, Shah KN, Bleesing J. Outcome of patients with NEMO deficiency following allogeneic hematopoietic cell transplant. J Allergy Clin Immunol. 2017;139(3):1040–1043 e2.

    Article  CAS  PubMed  Google Scholar 

  69. Wertz IE, O’Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430(7000):694–9.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  71. Ohnishi H, Kawamoto N, Seishima M, Ohara O, Fukao T. A Japanese family case with juvenile onset Behcet’s disease caused by TNFAIP3 mutation. Allergol Int. 2017;66(1):146–8.

    Article  PubMed  Google Scholar 

  72. Takagi M, Ogata S, Ueno H, et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2017;139(6):1914–22.

    Article  CAS  PubMed  Google Scholar 

  73. Aeschlimann FA, Batu ED, Canna SW, et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann Rheum Dis. 2018;77(5):728–35.

    Article  CAS  PubMed  Google Scholar 

  74. Damgaard RB, Walker JA, Marco-Casanova P, et al. The Deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell. 2016;166(5):1215–30.. e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou Q, Yu X, Demirkaya E, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113(36):10127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rivkin E, Almeida SM, Ceccarelli DF, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 2013;498(7454):318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Jéru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jéru, I., Canna, S.W., Hanson, E.P. (2019). Other Rare Monogenic Autoinflammatory Diseases. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics