Skip to main content

Genetic Aspects of Investigating and Understanding Autoinflammation

  • Chapter
  • First Online:

Abstract

At present, more than 30 different autoinflammatory diseases have been described at molecular and genetic level. The importance of genetic tests to reach a definitive diagnosis has become evident during the past few years. In parallel to the description of these diseases, several technical changes have occurred that have revolutionized the field of human genetics. Ten years ago, the gold-standard method for genetic studies was the Sanger method of DNA sequencing. Currently, studies based on next generation sequencing (NGS) methods are the standard methods in most genetic laboratories around the world. NGS makes it possible to achieve a diagnosis both by analysis of single families with extremely rare conditions, thus identifying new genes, or simultaneous genotyping of multiple genes in groups of patients. Moreover, in the past few years, different insights demonstrated an unexpected role of post-zygotic mutations and gene mosaicism in the pathogenesis of some monogenic autoinflammatory diseases. The availability of NGS methods in the clinics allows detection of (new) monogenic diseases in a growing number of previously undiagnosed patients with no familial history. This has resulted in the increased awareness of the clinical diversity of these diseases, best therapeutic approaches and follow-up schemes for the patients and appropriate genetic counseling for families.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACMG:

America College of Medical Genetics and Genomics

CAPS:

Cryopyrin-associated periodic syndrome

CGH:

Comparative genomic hybridization

CINCA:

Chronic infantile neurological, cutaneous and articular

CNV:

Copy number variations

DADA2:

Deficiency of adenosine deaminase 2

ddNTP:

Dideoxynucleotide

DIRA:

Deficiency of IL-1 receptor antagonist

DSAP:

Disseminated superficial actinic porokeratosis

FCAS:

Familial cold autoinflammatory syndrome

FMF:

Familial Mediterranean fever

IL:

Interleukin

InDels:

Insertions or deletions

JMP:

Joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome

LPS:

Lipopolysaccharide

MKD:

Mevalonate kinase deficiency

MWS:

Muckle Wells syndrome

NGS:

Next generation sequencing

NOMID:

Neonatal-onset multisystem inflammatory disease

PCR:

Polymerase chain reaction

PID:

Primary immunodeficiency diseases

POADS:

Postaxial acrofacial dysostosis

SAVI:

STING-associated vasculopathy with onset in infancy

SNP:

Single nucleotide polymorphism

SNV:

Single nucleotide variant

STING:

Stimulator of interferon genes

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TRAPS:

TNF receptor-associated periodic syndrome

VUS:

Variant of uncertain significance

WES:

Whole exome sequencing

WGS:

Whole genome sequencing

References

  1. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90:797–807.

    Article  Google Scholar 

  2. French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet. 1997;17:25–31.

    Article  Google Scholar 

  3. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97:133–44.

    Article  CAS  PubMed  Google Scholar 

  4. Drenth JP, Cuisset L, Grateau G, et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. International Hyper-IgD Study Group. Nat Genet. 1999;22:178–81.

    Article  CAS  PubMed  Google Scholar 

  5. Houten SM, Kuis W, Duran M, et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Genet. 1999;22:175–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet. 2001;29:301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aksentijevich I, Kastner DL. Genetics of monogenic autoinflammatory diseases: past successes, future challenges. Nat Rev Rheumatol. 2011;7:469–78.

    Article  CAS  PubMed  Google Scholar 

  8. Ferguson PJ, Chen S, Tayeh MK, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42:551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360:2426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reddy S, Jia S, Geoffrey R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med. 2009;360:2438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agarwal AK, Xing C, DeMartino GN, et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jéru I, Duquesnoy P, Fernandes-Alnemri T, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105:1614–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Setta-Kaffetzi N, Simpson MA, Navarini AA, et al. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am J Hum Genet. 2014;94:790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordan CT, Cao L, Roberson EDO, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90:784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuchs-Telem D, Sarig O, van Steensel MA, et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet. 2012;91:163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou Q, Yang D, Ombrello AK, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370:911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Navon Elkan P, Pierce SB, Segel R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370:921–31.

    Article  PubMed  CAS  Google Scholar 

  18. Glocker EO, Frede N, Perro M, et al. Infant colitis—it’s in the genes. Lancet. 2010;376:272.

    Article  Google Scholar 

  19. Glocker E-O, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marrakchi S, Guigue P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365:620–8.

    Article  CAS  PubMed  Google Scholar 

  21. Onoufriadis A, Simpson MA, Pink AE, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011;89:432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schafer BL, Bishop RW, Kratunis VJ, et al. Molecular cloning of human mevalonate kinase and identification of a missense mutation in the genetic disease mevalonic aciduria. J Biol Chem. 1992;267:13229–38.

    CAS  PubMed  Google Scholar 

  23. Zhang S-Q, Jiang T, Li M, et al. Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis. Nat Genet. 2012;44:1156–60.

    Article  CAS  PubMed  Google Scholar 

  24. Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46:1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dode C, Le Du N, Cuisset L, et al. New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet. 2002;70:1498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aksentijevich I, Nowak M, Mallah M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46:3340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feldmann J, Prieur A-M, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71:198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.

    Article  CAS  PubMed  Google Scholar 

  30. Miceli-Richard C, Lesage S, Rybojad M, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29:19–20.

    Article  CAS  PubMed  Google Scholar 

  31. Kanazawa N, Matsushima S, Kambe N, Tachibana T, Nagai S, Miyachi Y. Presence of a sporadic case of systemic granulomatosis syndrome with a CARD15 mutation. J Invest Dermatol. 2004;122:851–2.

    Article  CAS  PubMed  Google Scholar 

  32. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in Nod2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  33. Hugot J-P, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  34. Damgaard RB, Walker JA, Marco-Casanova P, et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell. 2016;166:1215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou A, Yu X, Demirkaya E, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A. 2016;113:10127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Q, Lee G-S, Brady J, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase C-gamma-2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet. 2012;1:713–20.

    Article  CAS  Google Scholar 

  37. Ombrello MJ, Remmers EF, Sun G, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med. 2012;366:330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brehm A, Liu Y, Sheikh A, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2015;125:4196–211.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arima K, Kinoshita A, Mishima H, et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A. 2011;108:14914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wise CA, Gillum JD, Seidman CE, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11:961–9.

    Article  CAS  PubMed  Google Scholar 

  41. Holzinger D, Fassl SK, de Jager W, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015;136:1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13:1178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ueki Y, Tiziani V, Santanna C, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28:125–6.

    Article  CAS  PubMed  Google Scholar 

  44. Morgan NV, Morris MR, Cangul H, et al. Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai-Dorfman disease. PLoS Genet. 2010;6:e1000833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371:507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67–73.

    Article  CAS  PubMed  Google Scholar 

  47. Jéru I, Cochet E, Duquesnoy P, et al. Involvement of TNFRSF11A molecular defects in autoinflammatory disorders. Arthritis Rheumatol. 2014;66:2621–7.

    Article  PubMed  CAS  Google Scholar 

  48. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–44.

    Article  CAS  PubMed  Google Scholar 

  50. Mardis E. Next-generation DNA sequencing platforms. Annu Rev Anal Chem. 2013;6:287–303.

    Article  CAS  Google Scholar 

  51. Rizzo JM, Buck MJ. Key principles and clinical applications of “next generation” DNA sequencing. Cancer Prev Res (Phila). 2012;5:887–900.

    Article  CAS  Google Scholar 

  52. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58.

    Article  CAS  PubMed  Google Scholar 

  53. Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.

    Article  CAS  PubMed  Google Scholar 

  54. Eilbeck K, Quinlan A, Yandell M. Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet. 2017;18:599–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borghesi A, Mencarelli MA, Memo L, et al. Intersociety policy statement of the use of whole exome sequencing in the critically ill newborn infant. Ital J Pediatr. 2017;43:100.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–53.

    Article  CAS  PubMed  Google Scholar 

  57. Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.

    Article  CAS  PubMed  Google Scholar 

  59. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340:284–95.

    Article  CAS  PubMed  Google Scholar 

  60. Fox EJ, Reid-Bayliss KS, Emond MJ, Loeb LA. Accuracy of next generation sequencing platforms. Next Gener Seq Appl. 2014;1. pii: 1000106.

    Google Scholar 

  61. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simon A, van der Meer JW, Vesely R, et al. Approach to genetic analysis in the diagnosis of hereditary autoinflammatory syndromes. Rheumatology (Oxford). 2006;45:269–73.

    Article  CAS  Google Scholar 

  63. Aróstegui JI, Aldea A, Modesto C, et al. Clinical and genetic heterogeneity among Spanish patients with recurrent autoinflammatory syndromes associated with the CIAS1/PYPAF1/NALP3 gene. Arthritis Rheum. 2004;50:4045–50.

    Article  PubMed  CAS  Google Scholar 

  64. D’Osualdo A, Picco P, Caroli F, et al. MVK mutations and associated clinical features in Italian patients affected with autoinflammatory disorders and recurrent fever. Eur J Hum Genet. 2005;13:314–20.

    Article  PubMed  CAS  Google Scholar 

  65. Aganna E, Hammond L, Hawkins PN, et al. Heterogeneity among patients with tumor necrosis factor receptor-associated periodic syndrome phenotypes. Arthritis Rheum. 2003;48:2632–44.

    Article  CAS  PubMed  Google Scholar 

  66. Federici L, Rittore-Domingo C, Koné-Paut I, et al. A decision tree for genetic diagnosis of hereditary periodic fever in unselected patients. Ann Rheum Dis. 2006;65:1427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Federici S, Sormani MP, Ozen S, et al. Paediatric Rheumatology International Trials Organisation (PRINTO) and Eurofever Project. Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers. Ann Rheum Dis. 2015;74:799–805.

    Article  PubMed  Google Scholar 

  68. Srivastava S, Cohen JS, Vernon H, et al. Clinical whole exome sequencing in child neurology practice. Ann Neurol. 2014;76:473–83.

    Article  PubMed  Google Scholar 

  69. Boycott KM, Rath A, Chong JX, et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100:695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rusmini M, Federici S, Caroli F, et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis. 2016;75:1550–7.

    Article  CAS  PubMed  Google Scholar 

  71. Omoyinmi E, Standing A, Keylock A, et al. Clinical impact of target next-generation sequencing gene panel for autoinflammation and vasculitis. PLoS One. 2017;12:e0181874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dunn P, Albury CL, Maksemous N, et al. Next generation sequencing methods for diagnosis of epilepsy syndromes. Front Genet. 2018;9:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kostik MM, Suspitsin EN, Guseva MN, et al. Multigene sequencing reveals heterogeneity of NLRP12-related autoinflammatory disorders. Rheumatol Int. 2018;38(5):887–93.

    Article  CAS  PubMed  Google Scholar 

  75. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–23.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Martorana D, Bonatti F, Mozzoni P, Vaglio A, Percesepe A. Monogenic autoinflammatory diseases with mendelian inheritance: genes, mutations, and genotype/phenotype correlations. Front Immunol. 2017;8:344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Van Gijn ME, Ceccherini I, Shinar Y, et al. New workflow for classification of genetic variants’ pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID). J Med Genet. 2018;55(8):530–7.

    Article  PubMed  Google Scholar 

  78. Reale C, Panteghini C, Carecchio M, Garavaglia B. The relevance of gene panels in movement disorders diagnosis: a lab perspective. Eur J Paediatr Neurol. 2018;22:285–91.

    Article  PubMed  Google Scholar 

  79. Lucito R, Healy J, Alexander J, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13:2291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Franco-Jarava C, Wang H, Martin-Nalda A, et al. TNFAIP3 haploinsufficiency is the cause of autoinflammatory manifestations in a patient with a deletion of 13Mb on chromosome 6. Clin Immunol. 2018;191:44–51.

    Article  CAS  PubMed  Google Scholar 

  81. D’haene B, Vandesompele J, Hellemans J. Accurate and objective copy number profiling using real-time quantitative PCR. Methods. 2010;50:262–70.

    Article  PubMed  CAS  Google Scholar 

  82. Uettwiller F, Sarrabay G, Rodero MP, et al. ADA2 deficiency: case report of a new phenotype and novel mutation in two sisters. RMD Open. 2016;2:e000236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balow JE Jr, Ryan JG, Chae JJ, et al. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts. Ann Rheum Dis. 2013;72:1064–70.

    Article  CAS  PubMed  Google Scholar 

  84. Borghini S, Ferrera D, Prigione I, et al. Gene expression profile in TNF receptor-associated periodic syndrome reveals constitutively enhanced pathways and new players in the underlying inflammation. Clin Exp Rheumatol. 2016;34:S121–8.

    PubMed  Google Scholar 

  85. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davidson S, Steiner A, Harapas CR, Masters SL. An update on autoinflammatory diseases: interferonopathies. Curr Rheumatol Rep. 2018;20:38.

    Article  PubMed  CAS  Google Scholar 

  87. Oda H, Kastner DL. Genomics, biology, and human illness: advances in the monogenic autoinflammatory diseases. Rheum Dis Clin North Am. 2017;43:327–45.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rice GI, Forte GM, Szynkiewicz M, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12:1159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14:307–20.

    Article  CAS  PubMed  Google Scholar 

  90. Saito M, Fujisawa A, Nishikomori R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2005;52:3579–85.

    Article  CAS  PubMed  Google Scholar 

  91. Lasigliè D, Mensa-Vilaro A, Ferrera D, et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J Rheumatol. 2017;44:1667–73.

    Article  PubMed  CAS  Google Scholar 

  92. Saito M, Nishikomori R, Kambe N, et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood. 2008;111:2132–41.

    Article  CAS  PubMed  Google Scholar 

  93. Izawa K, Hijikata A, Tanaka N, et al. Detection of base substitution-type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res. 2012;19:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arostegui JI, Lopez Saldaña MD, Pascal M, et al. A somatic NLRP3 Mutation as a cause of a Sporadic Case of CINCA/NOMID Syndrome. Novel evidences of the role of low-level mosaicism as pathophysiological mechanism underlying Mendelian inherited diseases. Arthritis Rheum. 2010;62:1158–66.

    Article  CAS  PubMed  Google Scholar 

  95. Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome. Results of an International multicenter collaborative study. Arthritis Rheum. 2011;63:3625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nakagawa K, Gonzalez-Roca E, Souto A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2015;74:603–10.

    Article  CAS  PubMed  Google Scholar 

  97. Eroglu FK, Kasapcopur O, Beşbaş N, et al. Genetic and clinical features of cryopyrin-associated periodic syndromes in Turkish children. Clin Exp Rheumatol. 2016;34:S115–20.

    PubMed  Google Scholar 

  98. Jiménez-Treviño S, González-Roca E, Ruiz-Ortiz E, Yague J, Ramos E, Arostegui JI. First report of vertical transmission of a somatic NLRP3 mutation in cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2013;72:1109–10.

    Article  PubMed  Google Scholar 

  99. Rowczenio DM, Gomes SM, Aróstegui JI, et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol. 2017;8:1410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Paloni G, Pastore S, Tommasini A, Lepore L, Taddio A. Delayed reactivation of chronic infantile neurologic, cutaneous, articular syndrome (CINCA) in a patient with somatic mosaicism of CIAS1/NLRP3 gene after withdrawal of anti-IL-1 beta therapy. Clin Exp Rheumatol. 2015;33:766.

    PubMed  Google Scholar 

  101. De Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135:561–4.

    Article  PubMed  CAS  Google Scholar 

  102. Omoyinmi E, Melo Gomes S, Standing A, et al. Brief Report: whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 2014;66:197–202.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou Q, Aksentijevich A, Wood GW, et al. Cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 2015;67:2428–36.

    Google Scholar 

  104. Mensa-Vilaro A, Teresa Bosque M, Magri G, et al. Brief Report: late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 2016;68:3035–41.

    Article  CAS  PubMed  Google Scholar 

  105. Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69:447–59.

    Article  CAS  PubMed  Google Scholar 

  106. De Inocencio J, Mensa-Vilaro A, Tejada-Palacios P, et al. Somatic NOD2 mosaicism in Blau syndrome. J Allergy Clin Immunol. 2015;136:484–7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mensa-Vilaro A, Cham WT, Tang SP, et al. Brief Report: first identification of intrafamilial recurrence of Blau syndrome due to gonosomal NOD2 mosaicism. Arthritis Rheumatol. 2016;68:1039–44.

    Article  CAS  PubMed  Google Scholar 

  108. Kadowaki T, Ohnishi H, Kawamoto N, et al. Haploinsufficiency of A20 causes autoinflammatory and autoimmune disorders. J Allergy Clin Immunol. 2018;141(4):1485–1488.e11.

    Article  PubMed  CAS  Google Scholar 

  109. Rowczenio DM, Trojer H, Omoyinmi E, et al. Brief Report: association of tumor necrosis factor receptor-associated periodic syndrome with gonosomal mosaicism of a novel 24-nucleotide TNFRSF1A deletion. Arthritis Rheumatol. 2016;68:2044–9.

    Article  CAS  PubMed  Google Scholar 

  110. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. 2017;18:832–42.

    Article  CAS  PubMed  Google Scholar 

  111. Simon A, Asli B, Braun-Falco M, et al. Schnitzler’s syndrome: diagnosis, treatment, and follow-up. Allergy. 2013;68:562–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Ceccherini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ceccherini, I., Rusmini, M., Arostegui, J.I. (2019). Genetic Aspects of Investigating and Understanding Autoinflammation. In: Hashkes, P., Laxer, R., Simon, A. (eds) Textbook of Autoinflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-98605-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98605-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98604-3

  • Online ISBN: 978-3-319-98605-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics