Skip to main content

Semantic Image Retrieval Using Point-Set Topology and the Ant Sleeping Model

  • Chapter
  • First Online:
Book cover Natural Computing for Unsupervised Learning

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

  • 946 Accesses

Abstract

Due to its widespread practical applications to image database management, semantic image retrieval has received a lot of attention in past decades. In particular, relevance feedback-based methods have been a popular approach toward bridging the gap between low-level features and high-level semantic concepts. Nature-inspired algorithms have shown a lot of potential to solve problems which are complex and require discovering of patterns under changing environment. However, lack of sound mathematical foundations has been considered a drawback toward better analysis of these algorithms. In this chapter, we propose a novel general topological model for semantic image retrieval using relevance feedback. We use point-set topology to develop mathematical constructs for modeling the semantic retrieval. In particular, we develop an image retrieval algorithm based on the ant sleeping model and extend the topological model to analyze it. Through experiments we show that our algorithm performs well in indexing an image database for relevance feedback. With our indexing procedure, the average response time to access image results from a storage device is lower when compared to vector quantization techniques. We also evaluate our algorithm, theoretically and empirically, against PicSOM (a CBIR system based on relevance feedback). Our ASM-based technique shows a very efficient retrieval performance using relevance feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibaba large-scale image search challenge (2015) https://tianchi.aliyun.com/competition/information.htm?raceId=231510

  2. Aly M, Munich M, Perona P (2011) Indexing in large scale image collections: scaling properties and benchmark. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV). IEEE, pp 418–425

    Google Scholar 

  3. Basener W (2006) Topology and its applications. Pure and applied mathematics: a Wiley series of texts, monographs and tracts. Wiley, Hoboken. http://books.google.co.in/books?id=hn8y3dCP2c8C

  4. Bellman RE (1961) Adaptive control processes – a guided tour. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  5. Bioretina dataset (2013) http://www.scl.ece.ucsb.edu/datasets

  6. Bonnlander BV, Weigend AS (1994) Selecting input variables using mutual information and nonparametric density estimation, in Proceedings of the 1994 International Symposium on Artificial Neural Networks (ISANN’94), pp 42–50

    Google Scholar 

  7. Brandt S, Laaksonen J, Oja E (1999) Statistical shape features for content-based image retrieval. J Math Image Vision 17(2):187–198

    Article  MathSciNet  MATH  Google Scholar 

  8. Burgin M, Eberbach E (2013) Ubiquity symposium: evolutionary computation and the processes of life: perspectives and reality of evolutionary computation: closing statement. Ubiquity 2013:5:1–5:12. https://doi.org/10.1145/2555235.2555240

    Article  Google Scholar 

  9. Califano A, Mohan R (1994) Multidimensional indexing for recognizing visual shapes. IEEE Trans Pattern Anal Mach Intell 16:373–392

    Article  Google Scholar 

  10. Castelli V (2001) Multidimensional indexing structures for content-based retrieval. Technical report, IBM

    Google Scholar 

  11. Chen JY, Bouman CA, Allebach JP (1997) Fast image database search using tree-structured VQ. Int Conf Image Process 2:827

    Article  Google Scholar 

  12. Chen JY, Bouman CA, Member S, Dalton JC (2000) Hierarchical browsing and search of large image databases 9:442–455

    Google Scholar 

  13. Chen L, Xiaohua X, Yixin C, Ping H (2004) A novel ant clustering algorithm based on cellular automata. In: IAT’04: Proceedings of the Intelligent Agent Technology, IEEE/WIC/ACM International Conference. IEEE Computer Society, Washington, DC, pp 148–154

    Google Scholar 

  14. Cortina dataset (2013) http://cortina.ece.ucsb.edu/

  15. Cox IJ, Miller ML, Minka TP, Papathomas TV, Yianilos PN (2001) The bayesian image retrieval system, pichunter: theory, implementation, and psychophysical experiments. IEEE Trans Image Process 9(1):20–37

    Article  Google Scholar 

  16. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40:5:1–5:60

    Article  Google Scholar 

  17. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  18. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B (Cybernetics) 26(1):29–41

    Article  Google Scholar 

  19. Ferhatosmanoglu H, Tuncel E, Agrawal D, El Abbadi A (2000) Vector approximation based indexing for non-uniform high dimensional data sets. In: Proceedings of the Ninth International Conference on Information and Knowledge Management, CIKM’00. ACM, New York, pp 202–209

    Chapter  Google Scholar 

  20. Floridi L (2014) Semantic conceptions of information. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, Spring 2017 Edition. https://plato.stanford.edu/archives/spr2017/entries/information-semantic/

  21. Friedman JH (1997) On bias, variance, 0/1 loss, and the curse-of-dimensionality. Data Min Knowl Disc 1(1):55–77

    Article  Google Scholar 

  22. Gudivada VN, Raghavan VV (1995) Content based image retrieval systems. Computer 28(9):18–22

    Article  Google Scholar 

  23. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14:47–57

    Article  Google Scholar 

  24. Handl J, Knowles J, Dorigo M (2006) Ant-based clustering and topographic mapping. Artif Life 12(1):35–62

    Article  Google Scholar 

  25. Herrmann L, Ultsch A (2008) The architecture of ant-based clustering to improve topographic mapping. In: Proceedings of the 6th International Conference on Ant Colony Optimization and Swarm Intelligence, ANTS’08. Springer, Berlin/Heidelberg, pp 379–386

    Chapter  Google Scholar 

  26. Herrmann L, Ultsch A (2008) Explaining ant-based clustering on the basis of self-organizing maps. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2008), pp 215–220

    Google Scholar 

  27. Herrmann L, Ultsch A (2010) Strengths and weaknesses of ant colony clustering. In: Fink A, Lausen B, Seidel W, Ultsch A (eds) Advances in data analysis, data handling and business intelligence, studies in classification, data analysis, and knowledge organization. Springer, Berlin/Heidelberg, pp 147–156

    Google Scholar 

  28. Jorma L, Markus K, Sami L, Erkki O (2000) PicSOM–content-based image retrieval with self-organizing maps. Pattern Recogn Lett 21(13–14):1199–1207

    MATH  Google Scholar 

  29. Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, New York, pp 760–766

    Google Scholar 

  30. Kherfi M, Ziou D (2006) Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples. IEEE Trans Image Process 15(4):1017–1030

    Article  Google Scholar 

  31. Kohonen T, Schroeder MR, Huang TS (eds) (2001) Self-organizing maps, 3rd edn. Springer, New York/Secaucus

    MATH  Google Scholar 

  32. Laaksonen J, Koskela M, Oja E (1999) Picsom: self-organizing maps for content-based image retrieval. In: International Joint Conference on Neural Networks. IJCNN’99, Washington, DC, vol 4. IEEE, pp 2470–2473

    Google Scholar 

  33. Laaksonen JT, Koskela JM, Oja E (1999) Picsom – a framework for content-based image database retrieval using self-organizing maps. In: In 11th Scandinavian Conference on Image Analysis, Kangerlusssuaq, pp 151–156

    Google Scholar 

  34. Laaksonen J, Member A, Koskela M, Oja E (2002) Picsom self-organizing image retrieval with MPEG-7 content descriptions. In: Guan L (ed) Networks, special issue on intelligent multimedia processing. IEEE, New York, pp 841–853

    Google Scholar 

  35. Le Hégarat-Mascle S, Kallel A, Descombes X (2007) Ant colony optimization for image regularization based on a nonstationary Markov modeling. IEEE Trans Image Process 16(3):865–878

    Article  MathSciNet  Google Scholar 

  36. Liu J, Tsui KC (2006) Toward nature-inspired computing. Commun ACM 49(10):59–64

    Article  Google Scholar 

  37. Liu J, Tang YY, Cao Y (1997) An evolutionary autonomous agents approach to image feature extraction. IEEE Trans Evol Comput 1(2):141–158

    Article  Google Scholar 

  38. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40(1):262–282

    Article  MATH  Google Scholar 

  39. Liu D, Yan S, Ji RR, Hua XS, Zhang HJ (2013) Image retrieval with query-adaptive hashing. ACM Trans Multimedia Comput Commun Appl 9(1):2:1–2:16. https://doi.org/10.1145/2422956.2422958

    Article  Google Scholar 

  40. MacArthur S, Brodley C, Shyu C (2000) Relevance feedback decision trees in content-based image retrieval. In: Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL’00). IEEE Computer Society, Washington, DC, pp 68–

    Google Scholar 

  41. Martens D, De Backer M, Haesen R, Vanthienen J, Snoeck M, Baesens B (2007) Classification with ant colony optimization. IEEE Trans Evol Comput 11(5):651–665

    Article  Google Scholar 

  42. Meilhac C, Nastar C (1999) Relevance feedback and category search in image databases. In: Proceedings of the IEEE International Conference on Multimedia Computing and Systems – vol 2, ICMCS’99. IEEE Computer Society, Washington, DC, pp 512–517

    Chapter  Google Scholar 

  43. Microsoft image grand challenge on image retrieval (2015). http://press.liacs.nl/mmgrand/microsoft.pdf

  44. Monmarché N (1999) On data clustering with artificial ants. In: AAAI-99 & GECCO-99 Workshop on Data Mining with Evolutionary Algorithms: Research Directions, Orlando, pp 23–26

    Google Scholar 

  45. Munkres J (1974) Topology, a first course. Prentice-Hall. http://books.google.co.in/books?id=LtEPAQAAMAAJ

    MATH  Google Scholar 

  46. Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295. https://doi.org/10.2307/1969529

    Article  MathSciNet  MATH  Google Scholar 

  47. Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 6(4):321–332

    Article  MATH  Google Scholar 

  48. Patnaik S, Yang XS, Nakamatsu K (2017) Nature-inspired computing and optimization, vol 10. Springer, Cham

    Book  MATH  Google Scholar 

  49. Powers DMW (2007) Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation. Technical report SIE-07-001, School of informatics and engineering, Flinders University, Adelaide

    Google Scholar 

  50. Ramakrishnan R, Gehrke J (2003) Database management systems, 3rd edn. McGraw-Hill, Inc., New York

    MATH  Google Scholar 

  51. Ramaswamy S, Rose K (2009) Towards optimal indexing for relevance feedback in large image databases. IEEE Trans Image Process 18:2780–2789

    Article  MathSciNet  MATH  Google Scholar 

  52. Rui Y, Huang T, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans Circuits Syst Video Technol 8(5):644–655. https://doi.org/10.1109/76.718510

    Article  Google Scholar 

  53. Schmitz P (2006) Inducing ontology from flickr tags. In: Collaborative Web Tagging Workshop at WWW’06, vol 50. Edinburgh, Scotland

    Google Scholar 

  54. Shelokar P, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195

    Article  Google Scholar 

  55. Strauss K, Burger D (2014) What the future holds for solid-state memory. Computer 47(1):24–31

    Article  Google Scholar 

  56. Su Z, Zhang H, Li S, Ma S (2003) Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Trans Image Process 12(8):924–937

    Article  Google Scholar 

  57. Sunet dataset (2013) http://www.cis.hut.fi/picsom/ftp.sunet.se

  58. Tao D, Tang X (2004) Nonparametric discriminant analysis in relevance feedback for content-based image retrieval. In: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04), vol 2. IEEE Computer Society, Washington, DC, pp 1013–1016

    Google Scholar 

  59. Tao D, Tang X (2004) Random sampling based SVM for relevance feedback image retrieval. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’04. IEEE Computer Society, Washington, DC, pp 647–652

    Google Scholar 

  60. Torgerson W (1952) Multidimensional scaling: I. theory and method. Psychometrika 17:401–419. https://doi.org/10.1007/BF02288916

    Article  MathSciNet  MATH  Google Scholar 

  61. Tuncel E, Ferhatosmanoglu H, Rose K (2002) VQ-index: an index structure for similarity searching in multimedia databases. In: Proceedings of ACM Multimedia, Juan Les Pins pp 543–552

    Google Scholar 

  62. Vasconcelos N, Lippman A (2000) A unifying view of image similarity. In: 15th International Conference on Pattern Recognition. Proceedings, Barcelona, vol 1. IEEE, pp 38–41

    Google Scholar 

  63. Wang K, Yin Q, Wang W, Wu S, Wang L (2016) A comprehensive survey on cross-modal retrieval. arXiv preprint arXiv:1607.06215

    Google Scholar 

  64. Webb AR (1995) Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recogn 28(5):753–759

    Article  Google Scholar 

  65. Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proceedings of the 24rd International Conference on Very Large Data Bases, VLDB’98. Morgan Kaufmann Publishers Inc., San Francisco, pp 194–205

    Google Scholar 

  66. White DA, Jain R (1996) Similarity indexing with the SS-tree. In: Proceedings of the Twelfth International Conference on Data Engineering, ICDE’96. IEEE Computer Society, Washington, DC, pp 516–523

    Chapter  Google Scholar 

  67. Wolfson HJ (1990) Model-based object recognition by geometric hashing. In: Proceedings of the First European Conference on Computer Vision, ECCV’90. Springer, New York, pp 526–536. http://portal.acm.org/citation.cfm?id=89081.89183

    Google Scholar 

  68. Xu X, Chen L, He P (2007) A novel ant clustering algorithm based on cellular automata. Web Intell Agent Syst 5(1):1–14. http://dl.acm.org/citation.cfm?id=1377757.1377758

    Google Scholar 

  69. Yin PY, Bhanu B, Chang KC, Dong A (2005) Integrating relevance feedback techniques for image retrieval using reinforcement learning. IEEE Trans Pattern Anal Mach Intell 27:1536–1551

    Article  Google Scholar 

  70. Zhang L, Rui Y (2013) Image search—from thousands to billions in 20 years. ACM Trans Multimedia Comput Commun Appl 9(1s):36:1–36:20. https://doi.org/10.1145/2490823

    Article  Google Scholar 

  71. Zhou XS, Huang TS (2003) Relevance feedback in image retrieval: a comprehensive review. Multimedia Syst 8(6):536–544. https://doi.org/10.1007/s00530-002-0070-3

    Article  Google Scholar 

  72. Zhuo L, Cheng B, Zhang J (2014) A comparative study of dimensionality reduction methods for large-scale image retrieval. Neurocomputing 141:202–210. https://doi.org/10.1016/j.neucom.2014.03.014

    Article  Google Scholar 

  73. Zhou W, Li H, Tian Q (2017) Recent advance in content-based image retrieval: a literature survey. arXiv preprint arXiv:1706.06064

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Karunakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karunakaran, D., Rao, S. (2019). Semantic Image Retrieval Using Point-Set Topology and the Ant Sleeping Model. In: Li, X., Wong, KC. (eds) Natural Computing for Unsupervised Learning. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-98566-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98566-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98565-7

  • Online ISBN: 978-3-319-98566-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics