Skip to main content

CMOS Silicon Photomultiplier Development

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 218))

  • 1349 Accesses

Abstract

CMOS—complementary metal-oxide-semiconductor technology at present time is the most advanced semiconductor technology for the development and production of microelectronic elements. Many signs have long pointed toward CMOS as the preferable sensor technology of the future. In many ways, the bright future for CMOS sensor technology was made officially by leading electronic companies in early 2015 to claim that up to 2025 all kind of sensors will be produced in CMOS technology. Beyond this, improvements of CMOS technology and the strong price/performance ratio of CMOS sensors make them increasingly attractive for many academic and industrial applications. The development of Silicon Photomultiplier (SiPM)—a new sensor for the low photon flux in standard CMOS technology—is an important new step for the development, optimisation and mass production of SiPM for the wide application areas as nuclear medicine, experimental physics, visualisation systems. It is an important step for the future developments of new SiPM structures, especially advanced digital SiPM structures, digital SiPM imagers, and Avalanche Pixel structures (APix) for the detection of ionisation particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Toshikaza, Photomultiplier Tubes, Basics and Applications (Hamamatsu Photonics K. K., Electron Tube Division, Japan, 2006)

    Google Scholar 

  2. M. Atac, J. Park, D. Cline, D. Chrisman, M. Petroff, E. Anderson, Nucl. Instrum. Methods Phys. Res. A 314, 56 (1992)

    Article  ADS  Google Scholar 

  3. V. Saveliev, V. Golovin, Nucl. Instrum. Methods A 442, 223 (2000)

    Article  ADS  Google Scholar 

  4. V. Golovin, V. Saveliev, Nucl. Instrum. Methods A 518, 560 (2004)

    Article  ADS  Google Scholar 

  5. A.G. Chynoweth, K.G. McKay, Phys. Rev. 102, 369 (1956)

    Article  ADS  Google Scholar 

  6. V. Saveliev, Quantum Detector Arrays (US Patent US 7,825,384, 2010)

    Google Scholar 

  7. N. D’Ascenzo, V. Saveliev, Q. Xie, L. Wang, in Optoelectronics—Materials and Devices, ed. by S. Pyshkin, J. Ballato (Intech, 2015)

    Google Scholar 

  8. N. D’Ascenzo, P. Marrocchesi, C.S. Moon, F. Morsani, L. Ratti, V. Saveliev, A. Savoy-Navarro, Q. Xie, J. Instrum. 9, C03027

    Google Scholar 

  9. N. D’Ascenzo, V. Saveliev, in Photodetectors, ed. by S. Pyshkin, J. Ballato (Intech, 2015)

    Google Scholar 

  10. D.J. Herbert, V. Saveliev, N. Belcari, N. D’Ascenzo, A. Del Guerra, A. Golovin, I.E.E.E. Trans, Nucl. Sci. 53, 389 (2006)

    Article  Google Scholar 

  11. V. Saveliev, in Advances Optical and Photonic Devices, ed. by W. Shi (Intech, 2012)

    Google Scholar 

  12. N. D’Ascenzo, V. Saveliev, in Photodetectors, ed. by J.-W. Shi (Intech, 2012)

    Google Scholar 

  13. N. D’Ascenzo, V. Saveliev, L. Wang, Q. Xie, J. Instrum. 10, C08017 (2015)

    Article  Google Scholar 

  14. M. Lee, H. Rucker, W. Choi, I.E.E.E. Electr, Dev. Lett. 33, 80 (2012)

    Article  Google Scholar 

  15. M. Lee, H. Rucker, W. Choi, I.E.E.E. Electr, Dev. Lett. 37, 60 (2016)

    Article  Google Scholar 

  16. N. Izhaky, M.T. Morse, S. Kohel, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M.J. Paniccia, I.E.E.E.J. Sel, Top. Quantum Electron. 12, 1688 (2006)

    Article  Google Scholar 

  17. W. Sul, J. Oh, C. Lee, G. Cho, W. Lee, S. Kim, J. Rhee, I.E.E.E. Electr, Dev. Lett. 31, 41 (2010)

    Article  Google Scholar 

  18. K. Katayama, T. Toyabe, IEDM Technical Digest (1989), p. 135

    Google Scholar 

  19. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)

    Article  ADS  Google Scholar 

  20. J.G. Fossum, R.P. Mertens, D.S. Lee, J.F. Nijs, Solid State Electron. 26, 569 (1983)

    Article  ADS  Google Scholar 

  21. D.M. Caughey, R.E. Thomas, Proc. IEEE 55, 2192 (1967)

    Article  Google Scholar 

  22. J.W. Slotboom, H.C. De Graaf, Solid State Electron. 19, 857 (1976)

    Article  ADS  Google Scholar 

  23. Silvaco. www.silvaco.com

  24. N. D’Ascenzo, V. Saveliev, Q. Xie, Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS 2016), p. 215

    Google Scholar 

  25. N. D’Ascenzo, V. Saveliev, Nucl. Instrum. Methods A 695, 265 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Saveliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Ascenzo, N., Saveliev, V., Xie, Q. (2018). CMOS Silicon Photomultiplier Development. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology. Springer Series in Optical Sciences, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-98548-0_8

Download citation

Publish with us

Policies and ethics