Skip to main content

Characterization of Micro-lenslet Array Using Digital Holographic Interferometric Microscope

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 218))

Abstract

When laser light is transmitted through a transparent micro-lenslet array, a phase shift is induced in the transmitted wavefront, depending on the height variation and refractive index of the micro-lenslet array. In this paper, digital holographic interferometric microscope (DHIM) with Fresnel reconstruction method is demonstrated for the characterization of micro-lenslet array. Measurement of diameter (D), sag height (h), radius of curvature (ROC), focal length (f) and shape of micro-lenses are presented in the paper. The height profile of micro-lenses measured by DHIM is compared with commercially available Coherence Correlation Interferometer (CCI) from Taylor Hobson Ltd. UK with axial resolution 0.1 Å. The root mean square error (RSME) between the measurement carried out by DHIM and CCI is 0.12%. The advantage of using the DHIM is that the distortions in the wavefronts due to aberrations in the optical system can be avoided by the interferometric comparison of reconstructed phase with and without the micro-lenslet array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sinzinger, J. Jahns, Microoptics. Wiley (1999)

    Google Scholar 

  2. R.H. Anderson, Close-up imaging of documents and displays with lens arrays. Appl. Opt. 18(4), 477–484 (1979)

    Article  ADS  Google Scholar 

  3. F.B. McCormick, F.A.P. Tooley, T.J. Cloonan, J.M. Sasian, H.S. Hinton, K.O. Mersereau, A.Y. Feldblum, Optical interconnections using microlens arrays. Opt. Quantum Electron. 24(4), S465–S477 (1992)

    Article  Google Scholar 

  4. T. Hou, C. Zheng, S. Bai, Q. Ma, D. Bridges, A. Hu, W.W. Duley, Fabrication, characterization, and applications of microlenses. Appl. Opt. 54(24), 7366–7376 (2015)

    Article  ADS  Google Scholar 

  5. SUS MicroOptics SA, Catalog (2007), pp. 1–20, http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2067_SMO_catalog.pdf

  6. M. Stedman, K. Lindsey, Limits of surface measurement by stylus instruments, in 1988 International Congress on Optical Science and Engineering (International Society for Optics and Photonics, 1989), pp. 56–61

    Google Scholar 

  7. K.W. Lee, Y.J. Noh, Y. Arai, Y. Shimizu, W. Gao, Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. Int. J. Precis. Technol. 2(2–3), 211–225 (2011)

    Article  Google Scholar 

  8. D.H. Lee, N.G. Cho, Assessment of surface profile data acquired by a stylus profilometer. Meas. Sci. Technol. 23(10), 105601 (2012)

    Article  ADS  Google Scholar 

  9. B. Xu, Z. Jia, X. Li, Y.L. Chen, Y. Shimizu, S. Ito, W. Gao, Surface form metrology of micro-optics, in International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013) (International Society for Optics and Photonics, 2013), pp. 876902–876902

    Google Scholar 

  10. J. Aoki, W. Gao, S. Kiyono, T. Ono, A high precision AFM for nanometrology of large area micro-structured surfaces, in Key Engineering Materials, vol. 295. (Trans Tech Publications, 2005), pp. 65–70

    Google Scholar 

  11. A. Yacoot, L. Koenders, Recent developments in dimensional nanometrology using AFMs. Meas. Sci. Technol. 22(12), 122001 (2011)

    Article  ADS  Google Scholar 

  12. W. Gao, S. Goto, K. Hosobuchi, S. Ito, Y. Shimizu, A noncontact scanning electrostatic force microscope for surface profile measurement. CIRP Ann. Manuf. Technol. 61(1), 471–474 (2012)

    Article  Google Scholar 

  13. H.J. Jordan, M. Wegner, H. Tiziani, Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas. Sci. Technol. 9(7), 1142 (1998)

    Article  ADS  Google Scholar 

  14. H.J. Tiziani, T. Haist, S. Reuter, Optical inspection and characterization of microoptics using confocal microscopy. Opt. Lasers Eng. 36(5), 403–415 (2001)

    Article  Google Scholar 

  15. J. Schwider, O.R. Falkenstoerfer, Twyman-Green interferometer for testing microspheres. Opt. Eng. 34(10), 2972–2975 (1995)

    Article  ADS  Google Scholar 

  16. S. Reichelt, H. Zappe, Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing. Appl. Opt. 44(27), 5786–5792 (2005)

    Article  ADS  Google Scholar 

  17. K.J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, H.P. Herzig, Metrology of refractive microlens arrays, in Photonics Europe (International Society for Optics and Photonics, 2004), pp. 43–51

    Google Scholar 

  18. V. Gomez, H. Ottevaere, H. Thienpont, Mach–Zehnder interferometer for real-time in situ monitoring of refractive microlens characteristics at the fabrication level. IEEE Photonics Technol. Lett. 20(9), 748–750 (2008)

    Article  ADS  Google Scholar 

  19. H. Sickinger, O.R. Falkenstoerfer, N. Lindlein, J. Schwider, Characterization of microlenses using a phase-shifting shearing interferometer. Opt. Eng. 33(8), 2680–2686 (1994)

    Article  ADS  Google Scholar 

  20. X. Zhu, S. Hu, L. Zhao, Focal length measurement of a microlens-array by grating shearing interferometry. Appl. Opt. 53(29), 6663–6669 (2014)

    Article  ADS  Google Scholar 

  21. U.P. Kumar, N.K. Mohan, M.P. Kothiyal, Characterization of micro-lenses based on single interferogram analysis using Hilbert transformation. Opt. Commun. 284(21), 5084–5092 (2011)

    Article  ADS  Google Scholar 

  22. A.J. Krmpot, G.J. Tserevelakis, B.D. Murić, G. Filippidis, D.V. Pantelić, 3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy. J. Phys. D: Appl. Phys. 46(19), 195101 (2013)

    Article  ADS  Google Scholar 

  23. H.H. Wahba, T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry. Appl. Opt. 48(8), 1573–1582 (2009)

    Article  ADS  Google Scholar 

  24. E. Acosta, L. Garner, G. Smith, D. Vazquez, Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens. J. Opt. Soc. Am. A 22(3), 424–433 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Anna, C. Shakher, D.S. Mehta, Three-dimensional shape measurement of micro-lens arrays using full-field swept-source optical coherence tomography. Opt. Lasers Eng. 48(11), 1145–1151 (2010)

    Article  Google Scholar 

  26. T. Zhang, I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23(15), 1221–1223 (1998)

    Article  ADS  Google Scholar 

  27. V. Kebbel, J. Mueller, W.P. Jueptner, Characterization of aspherical micro-optics using digital holography: improvement of accuracy, in International Symposium on Optical Science and Technology (International Society for Optics and Photonics, 2002), pp. 188–197

    Google Scholar 

  28. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge, Characterization of microlenses by digital holographic microscopy. Appl. Opt. 45(5), 829–835 (2006)

    Article  ADS  Google Scholar 

  29. Y. Wei, C. Wu, Y. Wang, Z. Dong, Efficient shape reconstruction of microlens using optical microscopy. IEEE Trans. Ind. Electron. 62(12), 7655–7664 (2015)

    Article  Google Scholar 

  30. U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)

    Article  ADS  Google Scholar 

  31. E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38(34), 6994–7001 (1999)

    Article  ADS  Google Scholar 

  32. E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291–293 (1999)

    Article  ADS  Google Scholar 

  33. U. Schnars, W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  34. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt. 42(11), 1938–1946 (2003)

    Article  ADS  Google Scholar 

  35. V. Kumar, C. Shakher, Testing of micro-optics using digital holographic interferometric microscopy, in Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS) (SCITEPRESS—Science and Technology Publications, Lda, 2016), pp. 142–147

    Google Scholar 

  36. U. Schnars, W.P. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13(9), R85 (2002)

    Article  ADS  Google Scholar 

  37. C. Wagner, S. Seebacher, W. Osten, W. Jüptner, Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology. Appl. Opt. 38(22), 4812–4820 (1999)

    Article  ADS  Google Scholar 

  38. V. Kumar, M. Kumar, C. Shakher, Measurement of natural convective heat transfer coefficient along the surface of a heated wire using digital holographic interferometry. Appl. Opt. 53(27), G74–G83 (2014)

    Article  Google Scholar 

  39. V. Kumar, C. Shakher, Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry. Appl. Opt. 54(6), 1257–1266 (2015)

    Article  ADS  Google Scholar 

  40. M. Takeda, Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: an overview. J. Sci. Ind. Metrol. 1(2), 79–99 (1990)

    Article  MathSciNet  Google Scholar 

  41. E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39(23), 4070–4075 (2000)

    Article  ADS  Google Scholar 

  42. R.M. Goldstein, H.A. Zebker, C.L. Werner, Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)

    Article  ADS  Google Scholar 

  43. J. Kühn, F. Charrière, T. Colomb, E. Cuche, Y. Emery, C. Depeursinge, Digital holographic microscopy for nanometric quality control of micro-optical components, in Integrated Optoelectronic Devices 2007 (International Society for Optics and Photonics, 2007), pp. 64750V–64750V

    Google Scholar 

Download references

Acknowledgements

The financial assistance received from the Defence Research and Development Organization (DRDO), Ministry of Defence, Government of India, under the project entitled ‘Testing of micro optics using digital holographic interferometry’ under FA sanction No. ERIP/ER/1300466/M/01/1556 dated 20 Nov. 2014 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shakher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Shakher, C. (2018). Characterization of Micro-lenslet Array Using Digital Holographic Interferometric Microscope. In: Ribeiro, P., Raposo, M. (eds) Optics, Photonics and Laser Technology. Springer Series in Optical Sciences, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-98548-0_2

Download citation

Publish with us

Policies and ethics