Skip to main content

Querying Heterogeneous Data in Graph-Oriented NoSQL Systems

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11031)

Abstract

NoSQL systems are based on a “schemaless” approach that not does require schema specification before writing data, allowing a wide variety of representations. This flexibility leads to a large volume of heterogeneous data, which makes their querying more complex for users who are compelled to know the different forms (i.e. the different schemas) of these data. This paper addresses this issue focusing on simplifying the heterogeneous data querying. Our work specially concerns graph-oriented NoSQL systems.

Keywords

  • Information systems
  • NoSQL data stores
  • Graph-oriented databases
  • Heterogeneous data querying

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98539-8_22
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-98539-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    http://oaei.ontologymatching.org/2017/

References

  1. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.-C., Ozcan, F., Shekita, E.J.: Jaql. In: Proceedings of VLDB Conference (2011)

    Google Scholar 

  2. Radic, D.: Influence of schemaless approach on database authorization. In: Hadžikadić, M., Avdaković, S. (eds.) IAT 2017. LNNS, vol. 28, pp. 243–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71321-2_21

    CrossRef  Google Scholar 

  3. Floratou, A., Teletia, N., DeWitt, D.J., Patel, J.M., Zhang, D.: Can the elephants handle the NoSQL onslaught? Proc. VLDB Endow. 5(12), 1712–1723 (2012)

    CrossRef  Google Scholar 

  4. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4J. In: EDBT/ICDT (2013)

    Google Scholar 

  5. Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. VLDB Endow. 5(12), 2018–2019 (2012)

    CrossRef  Google Scholar 

  6. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: How can we implement a multidimensional data warehouse using NoSQL? In: Hammoudi, S., Maciaszek, L., Teniente, E., Camp, O., Cordeiro, J. (eds.) ICEIS 2015. LNBIP, vol. 241, pp. 108–130. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-29133-8_6

    CrossRef  Google Scholar 

  7. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39(4), 12–27 (2011)

    CrossRef  Google Scholar 

  8. Megdiche, I., Teste, O., Trojahn dos Santos, C.: An extensible linear approach for holistic ontology matching. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 393–410. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_24

    CrossRef  Google Scholar 

  9. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching, pp. 117–128 (2002)

    Google Scholar 

  10. Shvaiko, P., Euzenat, J.: A Survey of schema-based matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11603412_5

    CrossRef  Google Scholar 

  11. Tahara, D., Diamond, T., Abadi, D.J.: Sinew: a SQL system for multi-structured data. In: 2014 SIGMOD, pp. 815–826. ACM (2014)

    Google Scholar 

  12. Wang, L., Zhang, S., Shi, J., Jiao, L., Hassanzadeh, O., Zou, J., Wangz, C.: Schema management for document stores. Proc. VLDB Endow. 8(9), 922–933 (2015)

    CrossRef  Google Scholar 

  13. Lin, C., Wang, J., Rong, C.: Towards heterogeneous keyword search. In: Proceedings of the ACM Turing 50th Celebration Conference-China, p. 46. ACM (2017)

    Google Scholar 

  14. Papakonstantinou, Y., Vassalos, V.: Query rewriting for semistructured data. In: ACM SIGMOD Record, vol. 28, pp. 455–466. ACM (1999)

    Google Scholar 

  15. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. (CSUR) 22(3), 183–236 (1990)

    CrossRef  Google Scholar 

  16. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)

    CrossRef  Google Scholar 

  17. Chasseur, C., Li, Y., Patel, J.M.: Enabling JSON document stores in relational systems. In: WebDB, vol. 13, pp. 14–15 (2013)

    Google Scholar 

  18. DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas from nested keyvalue data. In: Proceedings of the 2016 ICM, pp. 295–310. ACM (2016)

    Google Scholar 

  19. Baazizi, M.-A., Lahmar, H.B., Colazzo, D., Ghelli, G., Sartiani, C.: Schema inference for massive JSON datasets. In: EDBT (2017)

    Google Scholar 

  20. Herrero, V., Abelló, A., Romero, O.: NOSQL design for analytical workloads: variability matters. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 50–64. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_4

    CrossRef  Google Scholar 

  21. Sevilla Ruiz, D., Morales, S.F., García Molina, J.: Inferring versioned schemas from NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle, Stephen W., Opdahl, Andreas L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_35

    CrossRef  Google Scholar 

  22. Ben Hamadou, H., Ghozzi, F., Péninou, A., Teste, O.: Towards schema-independent querying on document data stores. In: DOLAP 2018 (2018)

    Google Scholar 

  23. Clark, J., DeRose, S., et al.: XML path language (XPath) version 1.0 (1999)

    Google Scholar 

  24. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J., Stefanescu, M.: XQuery 1.0: an XML query language (2002)

    Google Scholar 

  25. Bourhis, P., Reutter, J.L., Suarez, F., Vrgoč, D.: JSON: data model, query languages and schema specification. In: SIGMOD, pp. 123–135. ACM (2017)

    Google Scholar 

  26. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Document-oriented data warehouses: models and extended cuboids. In: RCIS 2016, pp. 1–11 (2016)

    Google Scholar 

  27. Chevalier, M., Malki, M.E., Kopliku, A., Teste, O., Tournier, R.: implementation of multidimensional databases in column-oriented NoSQL systems. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 79–91. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23135-8_6

    CrossRef  Google Scholar 

  28. El Malki, M., Ben Hamadou, H., El Malki, N., Kopliku, A.: MPT: suite tools to support performance tuning in NoSQL systems. In: CEIS 2018 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed El Malki or Olivier Teste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

El Malki, M., Ben Hamadou, H., Chevalier, M., Péninou, A., Teste, O. (2018). Querying Heterogeneous Data in Graph-Oriented NoSQL Systems. In: Ordonez, C., Bellatreche, L. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2018. Lecture Notes in Computer Science(), vol 11031. Springer, Cham. https://doi.org/10.1007/978-3-319-98539-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98539-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98538-1

  • Online ISBN: 978-3-319-98539-8

  • eBook Packages: Computer ScienceComputer Science (R0)