Querying Heterogeneous Data in Graph-Oriented NoSQL Systems

  • Mohammed El MalkiEmail author
  • Hamdi Ben Hamadou
  • Max Chevalier
  • André Péninou
  • Olivier TesteEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11031)


NoSQL systems are based on a “schemaless” approach that not does require schema specification before writing data, allowing a wide variety of representations. This flexibility leads to a large volume of heterogeneous data, which makes their querying more complex for users who are compelled to know the different forms (i.e. the different schemas) of these data. This paper addresses this issue focusing on simplifying the heterogeneous data querying. Our work specially concerns graph-oriented NoSQL systems.


Information systems NoSQL data stores Graph-oriented databases Heterogeneous data querying 


  1. 1.
    Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.-C., Ozcan, F., Shekita, E.J.: Jaql. In: Proceedings of VLDB Conference (2011)Google Scholar
  2. 2.
    Radic, D.: Influence of schemaless approach on database authorization. In: Hadžikadić, M., Avdaković, S. (eds.) IAT 2017. LNNS, vol. 28, pp. 243–248. Springer, Cham (2018). Scholar
  3. 3.
    Floratou, A., Teletia, N., DeWitt, D.J., Patel, J.M., Zhang, D.: Can the elephants handle the NoSQL onslaught? Proc. VLDB Endow. 5(12), 1712–1723 (2012)CrossRefGoogle Scholar
  4. 4.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4J. In: EDBT/ICDT (2013)Google Scholar
  5. 5.
    Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. VLDB Endow. 5(12), 2018–2019 (2012)CrossRefGoogle Scholar
  6. 6.
    Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: How can we implement a multidimensional data warehouse using NoSQL? In: Hammoudi, S., Maciaszek, L., Teniente, E., Camp, O., Cordeiro, J. (eds.) ICEIS 2015. LNBIP, vol. 241, pp. 108–130. Springer, Cham (2015). Scholar
  7. 7.
    Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39(4), 12–27 (2011)CrossRefGoogle Scholar
  8. 8.
    Megdiche, I., Teste, O., Trojahn dos Santos, C.: An extensible linear approach for holistic ontology matching. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 393–410. Springer, Cham (2016). Scholar
  9. 9.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching, pp. 117–128 (2002)Google Scholar
  10. 10.
    Shvaiko, P., Euzenat, J.: A Survey of schema-based matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005). Scholar
  11. 11.
    Tahara, D., Diamond, T., Abadi, D.J.: Sinew: a SQL system for multi-structured data. In: 2014 SIGMOD, pp. 815–826. ACM (2014)Google Scholar
  12. 12.
    Wang, L., Zhang, S., Shi, J., Jiao, L., Hassanzadeh, O., Zou, J., Wangz, C.: Schema management for document stores. Proc. VLDB Endow. 8(9), 922–933 (2015)CrossRefGoogle Scholar
  13. 13.
    Lin, C., Wang, J., Rong, C.: Towards heterogeneous keyword search. In: Proceedings of the ACM Turing 50th Celebration Conference-China, p. 46. ACM (2017)Google Scholar
  14. 14.
    Papakonstantinou, Y., Vassalos, V.: Query rewriting for semistructured data. In: ACM SIGMOD Record, vol. 28, pp. 455–466. ACM (1999)Google Scholar
  15. 15.
    Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. (CSUR) 22(3), 183–236 (1990)CrossRefGoogle Scholar
  16. 16.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)CrossRefGoogle Scholar
  17. 17.
    Chasseur, C., Li, Y., Patel, J.M.: Enabling JSON document stores in relational systems. In: WebDB, vol. 13, pp. 14–15 (2013)Google Scholar
  18. 18.
    DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas from nested keyvalue data. In: Proceedings of the 2016 ICM, pp. 295–310. ACM (2016)Google Scholar
  19. 19.
    Baazizi, M.-A., Lahmar, H.B., Colazzo, D., Ghelli, G., Sartiani, C.: Schema inference for massive JSON datasets. In: EDBT (2017)Google Scholar
  20. 20.
    Herrero, V., Abelló, A., Romero, O.: NOSQL design for analytical workloads: variability matters. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 50–64. Springer, Cham (2016). Scholar
  21. 21.
    Sevilla Ruiz, D., Morales, S.F., García Molina, J.: Inferring versioned schemas from NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle, Stephen W., Opdahl, Andreas L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480. Springer, Cham (2015). Scholar
  22. 22.
    Ben Hamadou, H., Ghozzi, F., Péninou, A., Teste, O.: Towards schema-independent querying on document data stores. In: DOLAP 2018 (2018)Google Scholar
  23. 23.
    Clark, J., DeRose, S., et al.: XML path language (XPath) version 1.0 (1999)Google Scholar
  24. 24.
    Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J., Stefanescu, M.: XQuery 1.0: an XML query language (2002)Google Scholar
  25. 25.
    Bourhis, P., Reutter, J.L., Suarez, F., Vrgoč, D.: JSON: data model, query languages and schema specification. In: SIGMOD, pp. 123–135. ACM (2017)Google Scholar
  26. 26.
    Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Document-oriented data warehouses: models and extended cuboids. In: RCIS 2016, pp. 1–11 (2016)Google Scholar
  27. 27.
    Chevalier, M., Malki, M.E., Kopliku, A., Teste, O., Tournier, R.: implementation of multidimensional databases in column-oriented NoSQL systems. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 79–91. Springer, Cham (2015). Scholar
  28. 28.
    El Malki, M., Ben Hamadou, H., El Malki, N., Kopliku, A.: MPT: suite tools to support performance tuning in NoSQL systems. In: CEIS 2018 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université Toulouse 3 Paul Sabatier, IRIT (CNRS/UMR5505)ToulouseFrance
  2. 2.Université Toulouse 2 Jean Jaurès, UT2C, IRIT (CNRS/UMR5505)ToulouseFrance

Personalised recommendations