Optimized Resource Allocation in Fog-Cloud Environment Using Insert Select

Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 22)


Energy management in modern way is done using cloud computing services to fulfill the energy demands of the users. These amenities are used in smart buildings to manage the energy demands. Entertaining maximum requests in minimum time is the main goal of our proposed system. To achieve this goal, in this paper, a scheme for resource distribution is proposed for cloud-fog based system. When the request is made by the user, the allocation of Virtual Machines (VMs) to the Data Centers (DCs) is required to be done timely for DSM. This model helps the DCs in managing the VMs in such a way that the request entertainment take minimum Response Time (RT). The proposed Insert Select Technique (IST) tackle this problem very effectively. Simulation results depicts the cost effectiveness and effective response time (RT) achievement.


Cloud Computing Micro grid Fog Computing Macro Grid Smart Grid 


  1. 1.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1, 718 (2010)CrossRefGoogle Scholar
  2. 2.
    Fatima, I., Javaid, N., Iqbal, M.N., Shafi, I., Anjum, A., Memon, U.: Integration of cloud and fog based environment for effective resource distribution in smart buildings. In: 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC-2018), pp. 2-6 (2018)Google Scholar
  3. 3.
    Zahoor, S., Javaid, N., Khan, A., Muhammad, F.j., Zahid, M., Guizani, M.: A cloud-fog-based smart grid model for efficient resource utilization. In: 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC-2018) (2018)Google Scholar
  4. 4.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25, 599–616 (2009)CrossRefGoogle Scholar
  5. 5.
    Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud computing. J. Netw. Comput. Appl. 34, 111 (2011)CrossRefGoogle Scholar
  6. 6.
    Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M.A., Choudhury, N., Kumar, V.: Security and privacy in fog computing: challenges. IEEE Access 5, 1929319304 (2017)Google Scholar
  7. 7.
    Wickremasinghe, B., Buyya, R.: CloudAnalyst: a CloudSim-based tool for modelling and analysis of large scale cloud computing environments. MEDC Proj. Rep. 22(6), 433–659 (2009)Google Scholar
  8. 8.
    del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.-C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12, 171–195 (2008)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Ning, Z., Wang, L.: Offloading in internet of vehicles: a fog-enabled real-time traffic management system. In: IEEE Transactions on Industrial Informatics, vol. 11 (2018)Google Scholar
  10. 10.
    Dehghanpour, E., Kazemi Karegar, H., Kheirollahi, R., Soleymani, T.: Optimal coordination of directional overcurrent relays in microgrids by using cuckoo-linear optimization algorithm and fault current limiter. IEEE Trans. Smart Grid 9, 1365–1375 (2018)CrossRefGoogle Scholar
  11. 11.
    Thirumalaisamy, B., Jegannathan, K.: A novel energy management scheme using ANFIS for independent microgrid. Int. J. Renew. Energy Res. (IJRER) 6(3), 735–46 (2016)Google Scholar
  12. 12.
    Zachar, M., Daoutidis, P.: Microgrid/Macrogrid energy exchange: a novel market structure and stochastic scheduling. IEEE Trans. Smart Grid 8, 178–189 (2017)CrossRefGoogle Scholar
  13. 13.
    Huld, T., Moner-Girona, M., Kriston, A.: Geospatial analysis of photovoltaic mini-grid system performance. Energies 10, 218 (2017)CrossRefGoogle Scholar
  14. 14.
    Lin, W.-M., Tu, C.-S., Tsai, M.-T.: Energy management strategy for microgrids by using enhanced bee colony optimization. Energies 9, 5 (2015)CrossRefGoogle Scholar
  15. 15.
    Tumuluru, V.K., Huang, Z., Tsang, D.H.K.: Integrating price responsive demand into the unit commitment problem. IEEE Trans. Smart Grid 5, 2757–2765 (2014)CrossRefGoogle Scholar
  16. 16.
    Tsai, L., Liao, W.: StarCube: an on-demand and cost-effective framework for cloud data center networks with performance guarantee. IEEE Trans. Cloud Comput. 6, 235249 (2018)CrossRefGoogle Scholar
  17. 17.
    Nguyen, Thoai, Nam.: A Genetic Algorithm for Power-aware Virtual Machine Allocation in Private Cloud (2013)Google Scholar
  18. 18.
    Dasgupta, K., Mandal, B., Dutta, P., Mandal, J.K., Dam, S.: A genetic algorithm (GA) based load balancing strategy for cloud computing. Procedia Technol. 10, 340–347 (2013)CrossRefGoogle Scholar
  19. 19.
    Desai, T., Prajapati, J.: A Survey of Various Load Balancing Techniques and Challenges in Cloud Computing (2013)Google Scholar
  20. 20.
    Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2015)CrossRefGoogle Scholar
  21. 21.
    Cao, Z., Lin, J., Wan, C., Song, Y., Zhang, Y., Wang, X.: Optimal cloud computing resource allocation for demand side management. IEEE Trans. Smart Grid 113 (2016)Google Scholar
  22. 22.
    Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs. Concurrency Comput. Pract. Exp. (2009)Google Scholar
  23. 23.
    Sahni, J., Vidyarthi, P.: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6, 218 (2018)CrossRefGoogle Scholar
  24. 24.
    Wang, S., Zhang, J., Huang, T., Pan, T., Liu, J., Liu, Y.: Flow distribution-aware load balancing for the datacenter. Comput. Commun. 106, 136–146 (2017)CrossRefGoogle Scholar
  25. 25.
    Wang, L., Gelenbe, E.: Adaptive dispatching of tasks in the cloud. IEEE Trans. Cloud Comput. 6, 33–45 (2018)CrossRefGoogle Scholar
  26. 26.
    Islam, M.A., Ren, S., Quan, G., Shakir, M.Z., Vasilakos, A.V.: Water-constrained geographic load balancing in data centers. IEEE Trans. Cloud Comput. 5, 208–220 (2017)CrossRefGoogle Scholar
  27. 27.
    Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 5, 283–294 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.COMSATS UniversityIslamabadPakistan

Personalised recommendations