Skip to main content

The Relationship Between Dietary Fat and Sarcopenia, Skeletal Muscle Loss, Osteoporosis and Risk of Fractures in Aging

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

Dietary fat has the capacity to influence skeletal muscle health, sarcopenia, osteoporosis and risk of fractures during aging. The decline of bone health and skeletal muscle mass and function during aging is a major contributory factor to age-related disease including sarcopenia, osteoporosis and risk of fractures. Nutrition represents a modifiable factor, which may be exploited to help reduce the enormous health and social-care burden associated with these conditions.

Dietary fat intake consists of different fatty acids, which include saturated fatty acids, polyunsaturated fatty acids, n-3 polyunsaturated fatty acids and monounsaturated fatty acids. There is wide variability in consumption of these fatty acids as well as for total fat intake. This makes modification of fat intake relevant for population strategies.

A number of relevant mechanisms exist for the relationship between dietary fat and skeletal muscle or bone health, but associations have thus far been underexplored in population and intervention studies. Although emerging evidence suggests specific fatty acids are important, further work is required to understand better the balance of different fatty acids in the diet and how this may contribute to musculoskeletal health during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welch AA, Macgregor AJ, Minihane AM, Skinner J, Valdes AA, Spector TD, Cassidy A. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18–79 years. J Nutr. 2014;144:327–34.

    Article  CAS  Google Scholar 

  2. Agency FS. McCance and Widdowson’s the composition of foods sixth summary edition. Cambridge: Royal Society of Chemistry; 2002.

    Google Scholar 

  3. Linseisen J, Welch AA, Ocke M, Amiano P, Agnoli C, Ferrari P, Sonestedt E, Chajes V, Bueno-de-Mesquita HB, Kaaks R, Weikert C, Dorronsoro M, Rodriguez L, Ermini I, Mattiello A, van der Schouw YT, Manjer J, Nilsson S, Jenab M, Lund E, Brustad M, Halkjaer J, Jakobsen MU, Khaw KT, Crowe F, Georgila C, Misirli G, Niravong M, Touvier M, Bingham S, Riboli E, Slimani N. Dietary fat intake in the European prospective investigation into cancer and nutrition: results from the 24-h dietary recalls. Eur J Clin Nutr. 2009;63(Suppl 4):S61–80.

    Article  CAS  Google Scholar 

  4. Michas G, Micha R, Zampelas A. Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis. 2014;234:320–8.

    Article  CAS  Google Scholar 

  5. Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol. 2017;31:203–17.

    Article  Google Scholar 

  6. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276–87.

    Article  CAS  Google Scholar 

  7. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.

    Article  CAS  Google Scholar 

  8. van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone. 2001;29:517–22.

    Article  Google Scholar 

  9. Lisk R, Yeong K. Reducing mortality from hip fractures: a systematic quality improvement programme. BMJ Qual Improv Rep. 2014;3:u205006.w2103. https://doi.org/10.1136/bmjquality.u205006.w2103.

    Article  PubMed  PubMed Central  Google Scholar 

  10. World Health Organisation. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser. 1994;843:1–129.

    Google Scholar 

  11. Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12:417–27.

    Article  CAS  Google Scholar 

  12. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  Google Scholar 

  13. Cawthon PM. Assessment of lean mass and physical performance in sarcopenia. J Clin Densitom. 2015;18:467–71.

    Article  Google Scholar 

  14. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39:412–23.

    Article  Google Scholar 

  15. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle. 2014;5:9–18.

    Article  Google Scholar 

  16. Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc. 2015;74:1–12.

    Article  Google Scholar 

  17. Prado CM, Siervo M, Mire E, Heymsfield SB, Stephan BC, Broyles S, Smith SR, Wells JC, Katzmarzyk PT. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99:1369–77.

    Article  CAS  Google Scholar 

  18. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43:748–59.

    Article  Google Scholar 

  19. Ethgen O, Beaudart C, Buckinx F, Bruyere O, Reginster JY. The future prevalence of sarcopenia in Europe: a claim for public health action. Calcif Tissue Int. 2017;100:229–34.

    Article  CAS  Google Scholar 

  20. Gale CR, Cooper C, Sayer AA. Prevalence of frailty and disability: findings from the English longitudinal study of ageing. Age Ageing. 2015;44:162–5.

    Article  Google Scholar 

  21. Kaehr E, Visvanathan R, Malmstrom TK, Morley JE. Frailty in nursing homes: the FRAIL-NH scale. J Am Med Dir Assoc. 2015;16:87–9.

    Article  Google Scholar 

  22. Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I, Bischoff-Ferrari H, Bruyere O, Cesari M, Dawson-Hughes B, Fielding RA, Kaufman JM, Landi F, Malafarina V, Rolland Y, van Loon LJ, Vellas B, Visser M, Cooper C, ESCEO Working Group. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2017;37(4):1121–32.

    Article  Google Scholar 

  23. Kilsby AJ, Sayer AA, Witham MD. Selecting potential pharmacological interventions in sarcopenia. Drugs Aging. 2017;34:233–40.

    Article  Google Scholar 

  24. Russo CR. The effects of exercise on bone. Basic concepts and implications for the prevention of fractures. Clin Cases Miner Bone Metab. 2009;6:223–8.

    PubMed  Google Scholar 

  25. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men--the MINOS study. J Bone Miner Res. 2005;20:721–9.

    Article  Google Scholar 

  26. Hamrick MW. A role for myokines in muscle-bone interactions. Exerc Sport Sci Rev. 2011;39:43–7.

    Article  Google Scholar 

  27. Curtis E, Litwic A, Cooper C, Dennison E. Determinants of muscle and bone aging. J Cell Physiol. 2015;230:2618–25.

    Article  CAS  Google Scholar 

  28. Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55–70.

    Article  CAS  Google Scholar 

  29. Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia. Front Physiol. 2017;8:1045.

    Article  Google Scholar 

  30. Welch AA. Nutritional influences on age-related skeletal muscle loss. Proc Nutr Soc. 2014;73:16–33.

    Article  CAS  Google Scholar 

  31. Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, Colbert LH, Pahor M, Rubin SM, Tylavsky FA, Visser M. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci. 2009;64:1183–9.

    Article  Google Scholar 

  32. Welch AA, Kelaiditi E, Jennings A, Steves CJ, Spector TD, Macgregor A. Dietary magnesium is positively associated with skeletal muscle power and indices of muscle mass and may attenuate the association between circulating C-reactive protein and muscle mass in women. J Bone Miner Res. 2016;31:317–25.

    Article  CAS  Google Scholar 

  33. Szulc P, Duboeuf F, Marchand F, Delmas PD. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr. 2004;80:496–503.

    Article  CAS  Google Scholar 

  34. Borsheim E, Bui QU, Tissier S, Kobayashi H, Ferrando AA, Wolfe RR. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin Nutr. 2008;27:189–95.

    Article  CAS  Google Scholar 

  35. Murton AJ. Muscle protein turnover in the elderly and its potential contribution to the development of sarcopenia. Proc Nutr Soc. 2015;74:1–10.

    Article  Google Scholar 

  36. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82.

    Article  CAS  Google Scholar 

  37. Wolfe RR, Miller SL, Miller KB. Optimal protein intake in the elderly. Clin Nutr. 2008;27:675–84.

    Article  CAS  Google Scholar 

  38. Frayn KN. Fat as a fuel: emerging understanding of the adipose tissue-skeletal muscle axis. Acta Physiol (Oxf). 2010;199:509–18.

    Article  CAS  Google Scholar 

  39. Holloway GP, Luiken JJ, Glatz JF, Spriet LL, Bonen A. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview. Acta Physiol (Oxf). 2008;194:293–309.

    Article  CAS  Google Scholar 

  40. Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle. 2017;8:190–201.

    Article  Google Scholar 

  41. Spriet LL. Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc. 2002;34:1477–84.

    Article  CAS  Google Scholar 

  42. Andersson A, Nalsen C, Tengblad S, Vessby B. Fatty acid composition of skeletal muscle reflects dietary fat composition in humans. Am J Clin Nutr. 2002;76:1222–9.

    Article  CAS  Google Scholar 

  43. Andersson A, Sjodin A, Hedman A, Olsson R, Vessby B. Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am J Physiol Metab. 2000;279:E744–51.

    Article  CAS  Google Scholar 

  44. Calder PC, Albers R, Antoine JM, Blum S, Bourdet-Sicard R, Ferns GA, Folkerts G, Friedmann PS, Frost GS, Guarner F, Lovik M, Macfarlane S, Meyer PD, M'Rabet L, Serafini M, van Eden W, van Loo J, Vas Dias W, Vidry S, Winklhofer-Roob BM, Zhao J. Inflammatory disease processes and interactions with nutrition. Br J Nutr. 2009;101(Suppl 1):S1–45.

    PubMed  Google Scholar 

  45. Da Boit M, Sibson R, Sivasubramaniam S, Meakin JR, Greig CA, Aspden RM, Thies F, Jeromson S, Hamilton DL, Speakman JR, Hambly C, Mangoni AA, Preston T, Gray SR. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: a randomized controlled trial. Am J Clin Nutr. 2017;105:151–8.

    Article  Google Scholar 

  46. Tachtsis B, Camera D, Lacham-Kaplan O. Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients. 2018;10:E309.

    Article  Google Scholar 

  47. Bollheimer LC, Buettner R, Pongratz G, Brunner-Ploss R, Hechtl C, Banas M, Singler K, Hamer OW, Stroszczynski C, Sieber CC, Fellner C. Sarcopenia in the aging high-fat fed rat: a pilot study for modeling sarcopenic obesity in rodents. Biogerontology. 2012;13:609–20.

    Article  CAS  Google Scholar 

  48. Kob R, Fellner C, Bertsch T, Wittmann A, Mishura D, Sieber CC, Fischer BE, Stroszczynski C, Bollheimer CL. Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat. J Cachexia Sarcopenia Muscle. 2015;6:181–91.

    Article  Google Scholar 

  49. Pongratz G, Lowin T, Kob R, Buettner R, Bertsch T, Bollheimer LC. A sustained high fat diet for two years decreases IgM and IL-1 beta in ageing Wistar rats. Immun Ageing. 2015;12:12.

    Article  Google Scholar 

  50. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc. 2010;58:2129–34.

    Article  Google Scholar 

  51. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr. 2010;93:402–12.

    Article  Google Scholar 

  52. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond). 2010;121:267–78.

    Article  Google Scholar 

  53. Yoshino J, Smith GI, Kelly SC, Julliand S, Reeds DN, Mittendorfer B. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol Rep. 2016;4:e12785.

    Article  Google Scholar 

  54. De Pablo P, Cooper MS, Buckley CD. Association between bone mineral density and C-reactive protein in a large population-based sample. Arthritis Rheum. 2012;64:2624–31.

    Article  Google Scholar 

  55. Berglundh S, Malmgren L, Luthman H, Mcguigan F, Akesson K. C-reactive protein, bone loss, fracture, and mortality in elderly women: a longitudinal study in the OPRA cohort. Osteoporos Int. 2015;26:727–35.

    Article  CAS  Google Scholar 

  56. Zwart SR, Pierson D, Mehta S, Gonda S, Smith SM. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J Bone Miner Res. 2010;25:1049–57.

    CAS  PubMed  Google Scholar 

  57. Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. 2016;16:51–67.

    Article  CAS  Google Scholar 

  58. Hasturk H, Kantarci A, Ohira T, Arita M, Ebrahimi N, Chiang N, Petasis NA, Levy BD, Serhan CN, Van Dyke TE. RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB J. 2006;20:401–3.

    Article  CAS  Google Scholar 

  59. Herrera BS, Ohira T, Gao L, Omori K, Yang R, Zhu M, Muscara MN, Serhan CN, Van Dyke TE, Gyurko R. An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption. Br J Pharmacol. 2008;155:1214–23.

    Article  CAS  Google Scholar 

  60. Priante G, Musacchio E, Pagnin E, Calo LA, Baggio B. Specific effect of arachidonic acid on inducible nitric oxide synthase mRNA expression in human osteoblastic cells. Clin Sci (Lond). 2005;109:177–82.

    Article  CAS  Google Scholar 

  61. Hay AW, Hassam AG, Crawford MA, Stevens PA, Mawer EB, Jones FS. Essential fatty acid restriction inhibits vitamin D-dependent calcium absorption. Lipids. 1980;15:251–4.

    Article  CAS  Google Scholar 

  62. Haag M, Kruger MC. Upregulation of duodenal calcium absorption by poly-unsaturated fatty acids: events at the basolateral membrane. Med Hypotheses. 2001;56:637–40.

    Article  CAS  Google Scholar 

  63. Haag M, Magada ON, Claassen N, Bohmer LH, Kruger MC. Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins Leukot Essent Fatty Acids. 2003;68:423–9.

    Article  CAS  Google Scholar 

  64. Sun L, Tamaki H, Ishimaru T, Teruya T, Ohta Y, Katsuyama N, Chinen I. Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat. Biosci Biotechnol Biochem. 2004;68:2613–5.

    Article  CAS  Google Scholar 

  65. Baggio B, Budakovic A, Nassuato MA, Vezzoli G, Manzato E, Luisetto G, Zaninotto M. Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 2000;58:1278–84.

    Article  CAS  Google Scholar 

  66. Guntur AR, Rosen CJ. IGF-1 regulation of key signaling pathways in bone. Bonekey Rep. 2013;2:437.

    Article  Google Scholar 

  67. Toogood AA. The somatopause: an indication for growth hormone therapy? Treat Endocrinol. 2004;3:201–9.

    Article  CAS  Google Scholar 

  68. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomark Prev. 2002;11:1441–8.

    CAS  Google Scholar 

  69. Young LR, Kurzer MS, Thomas W, Redmon JB, Raatz SK. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women. Nutr Res. 2013;33:565–71.

    Article  CAS  Google Scholar 

  70. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res. 1998;13:371–82.

    Article  CAS  Google Scholar 

  71. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54.

    Article  CAS  Google Scholar 

  72. Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res. 1999;14:2067–78.

    Article  CAS  Google Scholar 

  73. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res. 2001;16:182–8.

    Article  CAS  Google Scholar 

  74. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143:2376–84.

    Article  CAS  Google Scholar 

  75. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004;79:155–65.

    Article  CAS  Google Scholar 

  76. Kato I, Toniolo P, Zeleniuch-Jacquotte A, Shore RE, Koenig KL, Akhmedkhanov A, Riboli E. Diet, smoking and anthropometric indices and postmenopausal bone fractures: a prospective study. Int J Epidemiol. 2000;29:85–92.

    Article  CAS  Google Scholar 

  77. Corwin RL, Hartman TJ, Maczuga SA, Graubard BI. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr. 2006;136:159–65.

    Article  CAS  Google Scholar 

  78. Trichopoulou A, Georgiou E, Bassiakos Y, Lipworth L, Lagiou P, Proukakis C, Trichopoulos D. Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev Med. 1997;26:395–400.

    Article  CAS  Google Scholar 

  79. Martinez-Ramirez MJ, Palma S, Martinez-Gonzalez MA, Delgado-Martinez AD, de la Fuente C, Delgado-Rodriguez M. Dietary fat intake and the risk of osteoporotic fractures in the elderly. Eur J Clin Nutr. 2007;61:1114–20.

    Article  CAS  Google Scholar 

  80. Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, Jurvelin JS, Kroger H. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. 2012;66:496–503.

    Article  CAS  Google Scholar 

  81. Hogstrom M, Nordstrom P, Nordstrom A. n-3 fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 study. Am J Clin Nutr. 2007;85:803–7.

    Article  Google Scholar 

  82. Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, Tylavsky F, Wactawski-Wende J, Young AM, Lu B, Jackson RD. Fatty acid consumption and risk of fracture in the women’s health initiative. Am J Clin Nutr. 2010;92:1452–60.

    Article  CAS  Google Scholar 

  83. Weiss LA, Barrett-Connor E, von Muhlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the rancho Bernardo study. Am J Clin Nutr. 2005;81:934–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailsa A. Welch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welch, A.A., Hayhoe, R.P.G. (2019). The Relationship Between Dietary Fat and Sarcopenia, Skeletal Muscle Loss, Osteoporosis and Risk of Fractures in Aging. In: Weaver, C., Bischoff-Ferrari, H., Daly, R., Wong, MS. (eds) Nutritional Influences on Bone Health. Springer, Cham. https://doi.org/10.1007/978-3-319-98464-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98464-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98463-6

  • Online ISBN: 978-3-319-98464-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics