Skip to main content

Structures of the Brain

  • 277 Accesses

Abstract

In this chapter, we give a rather restricted volume of known information about the brain, in order to facilitate understanding of the results of our measurements devoted to the connection of the brain with the cosmos. We show in Chap. 6 that the brain’s electromagnetic (EM) processes depend closely on space weather (see Chap. 4) and especially on geomagnetic storms. The mechanism of this dependence is not known (it is far from the only unknown mechanism of the electro-neurophysiology of the brain). We suppose that the changes we have measured in the distribution of electrical potentials on the surface of the scalp during geomagnetic storms result from the interaction of the brain’s macro-EM processes with ones on the nerve cell (neuron) level. Thus, the structures of the brain and the neuron are discussed in this chapter.

An introduction to electroencephalography (EEG) is provided because EEG is the basis of our measurements. Moreover, a section on brain rhythms (i.e., the frequency ranges of the brain’s EM processes) is included because, according to our EEG measurements, the theta rhythm is the phenomenon that most effectively demonstrates the distinctive dependence of the brain on space weather.

Keywords

  • Electro-neurophysiology
  • Electroencephalography
  • Brain rhythms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98461-2_5
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-98461-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19

References

  • Atwood, H., & MacKay, W. (1989). Essentials of neurophysiology. Toronto: Decker.

    Google Scholar 

  • Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.

    CrossRef  Google Scholar 

  • Buzsaki, G. (2006). Rhythms of the brain. Oxford: Oxford University Press.

    CrossRef  Google Scholar 

  • Eckhoff, P., Holmes, P., et al. (2015). A short course in mathematical neuroscience. Program in applied and computational mathematics. Princeton: Princeton University.

    Google Scholar 

  • Ermentraut, G. B., & Terman, D. H. (2010). Mathematical foundations of neuroscience. New York: Springer.

    CrossRef  Google Scholar 

  • Grun, S., & Rotter, S. (Eds.). (2010). Analysis of parallel spike trains. New York: Springer.

    Google Scholar 

  • Herbert H. J. (1938). Electro-Encephalography. Archives of Neurology & Psychiatry, 39(1), 96.

    CrossRef  Google Scholar 

  • Izhikevich, E. (2010). Dynamical systems in neuroscience: The geometry of excitability and bursting (p. 441). Cambridge: MIT Press.

    Google Scholar 

  • Jasper, H., Andrews, H. (1938). Normal differentiation of occipital and precentral regions. Archive of Neurology and Psychiatry, 39(1), 96–115. doi:10.1001/archneurpsyc.1938.02270010106010. Accessed 08 Jan 2019.

    CrossRef  Google Scholar 

  • Lodish, H., Berk, A., et al. (2000). Molecular cell biology (4th ed.). New York: Freeman.

    Google Scholar 

  • Nunez, P., & Srinivasan, R. (2005). Electrical fields of the brain: Neurophysics of EEG (p. 640). Oxford: Oxford University Press.

    Google Scholar 

  • Sanei, S., & Chambers, J. (2013). EEG signal processing. Hoboken: Wiley.

    Google Scholar 

  • Schomer, D.L., & Lopes da Silva, F. (2011). Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (6 edition). Oxford University Press.

    Google Scholar 

  • Schomer, D., & Lopes da Silva, F. (Eds.). (2018). Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields. (7th ed.p. 1264). Oxford: Oxford University Press.

    Google Scholar 

  • Shepherd, G. M. (1991). Foundations of the neuron doctrine. Oxford: Oxford University Press.

    Google Scholar 

  • Walter, W. G. (1938). Critical review: the technique and application of electro-encephalography. Journal of Neurology, Neurosurgery & Psychiatry, 1(4), 359–385.

    CrossRef  Google Scholar 

  • Walter, W.G. & Dovey, V.J. (1944). Electro-encephalography in cases of subcortical tumour. Journal of Neurology, Neurosurgery & Psychiatry, 7(3–4), 57–65.

    Google Scholar 

  • Wikipedia Contributors. (2018a). Frontal lobe. Wikipedia, the free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Frontal_lobe&oldid=864583753

  • Wikipedia Contributors. (2018b). Action potential. Wikipedia, the free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Action_potential&oldid=863294233

  • Zschocke, S., & Speckmann, J. (Eds.). (1993). Basic mechanisms of the EEG. Boston: Birkauser.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Novik, O., Smirnov, F., Volgin, M. (2019). Structures of the Brain. In: Electromagnetic Geophysical Fields. Springer, Cham. https://doi.org/10.1007/978-3-319-98461-2_5

Download citation