Structures of the Brain



In this chapter, we give a rather restricted volume of known information about the brain, in order to facilitate understanding of the results of our measurements devoted to the connection of the brain with the cosmos. We show in Chap.  6 that the brain’s electromagnetic (EM) processes depend closely on space weather (see Chap.  4) and especially on geomagnetic storms. The mechanism of this dependence is not known (it is far from the only unknown mechanism of the electro-neurophysiology of the brain). We suppose that the changes we have measured in the distribution of electrical potentials on the surface of the scalp during geomagnetic storms result from the interaction of the brain’s macro-EM processes with ones on the nerve cell (neuron) level. Thus, the structures of the brain and the neuron are discussed in this chapter.

An introduction to electroencephalography (EEG) is provided because EEG is the basis of our measurements. Moreover, a section on brain rhythms (i.e., the frequency ranges of the brain’s EM processes) is included because, according to our EEG measurements, the theta rhythm is the phenomenon that most effectively demonstrates the distinctive dependence of the brain on space weather.


Electro-neurophysiology Electroencephalography Brain rhythms 


  1. Atwood, H., & MacKay, W. (1989). Essentials of neurophysiology. Toronto: Decker.Google Scholar
  2. Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.CrossRefGoogle Scholar
  3. Buzsaki, G. (2006). Rhythms of the brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Eckhoff, P., Holmes, P., et al. (2015). A short course in mathematical neuroscience. Program in applied and computational mathematics. Princeton: Princeton University.Google Scholar
  5. Ermentraut, G. B., & Terman, D. H. (2010). Mathematical foundations of neuroscience. New York: Springer.CrossRefGoogle Scholar
  6. Grun, S., & Rotter, S. (Eds.). (2010). Analysis of parallel spike trains. New York: Springer.Google Scholar
  7. Herbert H. J. (1938). Electro-Encephalography. Archives of Neurology & Psychiatry, 39(1), 96.CrossRefGoogle Scholar
  8. Izhikevich, E. (2010). Dynamical systems in neuroscience: The geometry of excitability and bursting (p. 441). Cambridge: MIT Press.Google Scholar
  9. Jasper, H., Andrews, H. (1938). Normal differentiation of occipital and precentral regions. Archive of Neurology and Psychiatry, 39(1), 96–115. doi:10.1001/archneurpsyc.1938.02270010106010. Accessed 08 Jan 2019.CrossRefGoogle Scholar
  10. Lodish, H., Berk, A., et al. (2000). Molecular cell biology (4th ed.). New York: Freeman.Google Scholar
  11. Nunez, P., & Srinivasan, R. (2005). Electrical fields of the brain: Neurophysics of EEG (p. 640). Oxford: Oxford University Press.Google Scholar
  12. Sanei, S., & Chambers, J. (2013). EEG signal processing. Hoboken: Wiley.Google Scholar
  13. Schomer, D.L., & Lopes da Silva, F. (2011). Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (6 edition). Oxford University Press.Google Scholar
  14. Schomer, D., & Lopes da Silva, F. (Eds.). (2018). Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields. (7th ed.p. 1264). Oxford: Oxford University Press.Google Scholar
  15. Shepherd, G. M. (1991). Foundations of the neuron doctrine. Oxford: Oxford University Press.Google Scholar
  16. Walter, W. G. (1938). Critical review: the technique and application of electro-encephalography. Journal of Neurology, Neurosurgery & Psychiatry, 1(4), 359–385.CrossRefGoogle Scholar
  17. Walter, W.G. & Dovey, V.J. (1944). Electro-encephalography in cases of subcortical tumour. Journal of Neurology, Neurosurgery & Psychiatry, 7(3–4), 57–65.Google Scholar
  18. Wikipedia Contributors. (2018a). Frontal lobe. Wikipedia, the free Encyclopedia.
  19. Wikipedia Contributors. (2018b). Action potential. Wikipedia, the free Encyclopedia.
  20. Zschocke, S., & Speckmann, J. (Eds.). (1993). Basic mechanisms of the EEG. Boston: Birkauser.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IZMIRAN of the Russian Academy of SciencesMoscowRussia

Personalised recommendations