Skip to main content

Low-Resistivity Structures in the Seismically Active Lithosphere Zones and Observations of Electromagnetic Signals of Seismic Origin

  • 275 Accesses

Abstract

In this chapter, we cite the published results of the field investigations of other authors regarding the characteristics of (a) low-resistivity (i.e., low-ohmic) structures in seismically active lithosphere zones and (b) electromagnetic (EM) signals of seismic origin (seismo-EM signals). The typicality of similar structures in seismically active zones, according to numerous expeditions and the geological theory of ore genesis, is discussed as well.

These data may be considered as the geological and geophysical basis of the theory of seismo-EM interaction and earthquake (EQ) precursory signals (also referred to as precursors), which are discussed further in the subsequent chapters. Precursors are understood here as the measurable signals before an earthquake, i.e., without any estimations (these have been doubtful, recently) of their prognostic value.

Keywords

  • Earthquake
  • Ore genesis
  • Low-resistivity structure
  • Precursor
  • EM signals

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98461-2_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-98461-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

References

  • Arora, B. R., & Mahashabde, M. V. (1987). A transverse conductive structure in the Northwest Himalaya. Physics of the Earth and Planetary Interiors, 45, 119–127.

    CrossRef  Google Scholar 

  • Belov, S. V., Migunov, N. I., & Sobolev, G. A. (1974). Magnetic effects of strong earthquakes on Kamchatka. Magnetism and Aeronomy, 14, 380–382. (In Russian: Белов С.В., Мигунов Н.И., Соболев Г.А. Магнитные эффекты сильных землетрясений на Камчатке. Магнетизм и аэрономия. 1974, 14, c. 380–382).

    Google Scholar 

  • Bragin, V. D., Volykhin, A. M., Trapesnikov, Y. A., Koshkin, N. A., & Batalev, V. Y. (1993). Depth structure of seismicity-dangerous zones of the Tien-Shan based on electromagnetic sounding data. Journal of Earthquake Prediction Research, 2, 329–338.

    Google Scholar 

  • Chamalaun, F. H., & Barton, C. E. (1993). The large scale electrical conductivity structure of Australia. Journal of Geomagnetism and Geoelectricity, 45, 1209–1212.

    CrossRef  Google Scholar 

  • Dea, J. Y., Hansen, P. M., & Boerner, W. M. (1994). Direct observation of real time generation of electromagnetic signals and a generalized model for earthquake precursor emission. In M. Hayakawa & Y. Fujinawa (Eds.), Electromagnetic phenomena related to earthquake prediction (pp. 439–449). Tokyo: Terra Scientific (Terrapub).

    Google Scholar 

  • Eberhart-Phillips, D., Labson, V. F., Stanley, W. D., Michael, A. J., & Rodriguez, B. D. (1990). Preliminary velocity and resistivity models of the Loma Prieta earthquake region. Geophysical Research Letters, 17, 1235–1238.

    CrossRef  Google Scholar 

  • Fuginawa, Y., Takahashi, K., Matsumoto, T., Iitaka, H., Yamane, S., Nakayama, T., et al. (2000). Electromagnetic field anomaly associated with the 1998 seismic swarms in central Japan. Physics and Chemistry of the Earth, Part A, 25, 247–253.

    CrossRef  Google Scholar 

  • Gohberg, M. B., et al. (1991). Electromagnetic field of an earthquake’s focus. Proceedings of RAS, 308(1), 62–65. (In Russian: Гохберг М.Б., Крылов С.М., Левшенко В.Т. Электромагнитное поле очага землетрясений. Доклады АН СССР. 1991, 308, № 1, c. 62–65).

    Google Scholar 

  • Gough, D. I. (1974). Electrical conductivity under western North America in relation to heat flow, seismology and structure. Journal of Geomagnetism and Geoelectricity, 26, 105–123.

    CrossRef  Google Scholar 

  • Gueguen, Y., & Palciauscas, V. (1994). Introduction to physics of rocks. Princeton: Princeton University Press.

    Google Scholar 

  • Guodong, L. (1991). MT studies on the conductivity of the crust and upper mantle in China. Beijing: Annual Review in Geophysics Seismological Press.

    Google Scholar 

  • Honkura, Y. (1974). Electrical conductivity anomalies beneath the Japan arc. Journal of Geomagnetism and Geoelectricity, 26, 147–171.

    CrossRef  Google Scholar 

  • Kak, A. G., & Slaney, M. (1987). Principles of computerized tomographic imaging. New Jersey: IEEE.

    Google Scholar 

  • Kapio, J., & Somersalo, E. (2010). Statistical and computational inverse problems. New York: Springer.

    Google Scholar 

  • Kissin, I. G., Belikov, V. M., & Ishankuliev, G. A. (1996). Short-term groundwater level variations in a seismic region as an indicator of the geodynamic regime. Tectonophysics, 265(3–4), 313–326.

    CrossRef  Google Scholar 

  • Knopov, P., & Kasitskaya, E. (2002). Empirical estimates in stochastic optimization and identification. New York: Springer.

    CrossRef  Google Scholar 

  • Korovkin, N. V., Chechurin, V. L., & Hayakawa, M. (2007). Inverse problems in electric circuits and electromagnetics. New York: Springer.

    Google Scholar 

  • Kryzhanovsky, B., et al. (Eds.). (2017). Advances in neural computations, machine learning, and cognitive research (p. 199). New York: Springer.

    Google Scholar 

  • Lilley, F. E. M. (1975). Electrical conductivity anomalies and continental seismicity in Australia. Nature, 257, 381–382.

    CrossRef  Google Scholar 

  • Lilley, F. E. M., & Smylie, D. E. (1968). Elastic wave motion and a nonuniform magnetic field in electrical conductors. Journal of Geophysical Research., 73(20), 6527–6533.

    CrossRef  Google Scholar 

  • Lilley, F. E. M., Singh, B. P., Аrоrа, B. R., Srivastava, B. I., Plasad, S. N., & Sloan, M. N. (1981). A magnetometer array study in northwest India. Physics of the Earth and Planetary Interiors, 25, 232–240.

    CrossRef  Google Scholar 

  • Menendez, R. G. P., Andino, S. L. G., Morand, S., Michel, C. M., & Landis, T. (2000). Imaging the electrical activity of the brain: ELECTRA. Human Brain Mapping, 9, 1–12.

    CrossRef  Google Scholar 

  • Menke, W. (2018). Geophysical data analysis (Discrete inverse theory) (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Nabighian, M. N., & Macnae, J. C. (2005). Electric and EM methods, 1980–2005. The Leading Edge, 24, 542–545.

    CrossRef  Google Scholar 

  • Orihara, Y., Kamigawa, M., & Nagao, T. (2014). Preseismic changes of the level and temperature of confined groundwater related to the 2011 Tohoku earthquake. Scientific Reports, 4, 6907.

    CrossRef  Google Scholar 

  • Park, S. K., & Fitterman, D. V. (1990). Sensitivity of the telluric monitoring array in Parkfield, California, to changes of resistivity. Journal of Geophysical Research, 95(15), 557–571.

    Google Scholar 

  • Parkinson, W. D., Hermanlto, R., Sayers, J., Bindoff, N. L., Dosso, H. V., & Nienaber, W. (1988). The Tamar conductivity anomaly. Physics of the Earth Planetary Interiors, 52, 8–22.

    CrossRef  Google Scholar 

  • Raknes, E. B., & Arnsten, B. (2017). Challenges and solutions for performing 3D time-domain elastic full-waveform inversion. The Leading Edge, 36(1), 88–93. https://doi.org/10.1190/tle36010088.1. Accessed 10 January 2019.

    CrossRef  Google Scholar 

  • Sarkar, S., Gwal, A. K., & Parrot, M. (2007). Ionospheric variations observed by the Demeter satellite in the mid-latitude region during strong earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1524–1540.

    CrossRef  Google Scholar 

  • Shirong., M. (1992). Progress in earthquake prediction in China during 80’s. Journal of Earthquake Prediction Research, 1, 43–57.

    Google Scholar 

  • Sochelnikov, V. V. (2006). The high-resolution electro-prospecting. (In Russian: Высокоразрешающая электроразведка. Морская Государственная Академия имени адмирала Ф.Ф.Ушакова).

    Google Scholar 

  • Special Section on Inverse Problems in Geosciences. (2013). Inverse Problems in Science and Engineering 21(3), pp. 355–561.

    CrossRef  Google Scholar 

  • Strakhov, V. N. (2008). The list of publications. In: My life in science (Vol. 1, pp. 19–67). Moscow: Schmidt Institute of Physics of the Earth, RAS. (In Russian: Список публикаций. Моя жизнь в науке. Т. 1. ИФЗ РАН. С. 19–67).

    Google Scholar 

  • Takahashi K., Fujinawa Y., Matsumoto T., Nakayama T., Sawada T., Sakai H., et al. (2000). An anomalous electric field variation associated with the seismic swarm (1)-underground electric observation at Hodaka station. Technical note of the National Research Institute for Earth Science and Disaster Prevention, No. 204, pp. 1–204.

    Google Scholar 

  • Tarantola, A. (1987). Inverse problem theory: Methods for data fitting and model parameter estimation (p. 630). Amsterdam: Elsevier.

    Google Scholar 

  • Vozoff, K. (1984). Model study for the proposed magnetotelluric (MT) traverse in North India. Tectonophysics, 105, 399–411.

    CrossRef  Google Scholar 

  • Wikipedia Contributors. (2018). Craton. Wikipedia, the free Encyclopedia. Accessed October 29, 2018, from https://en.wikipedia.org/w/index.php?title=Craton&oldid=863967996

  • Zubkov, S. I. (1992). Thermal precursors of earthquakes. Physics of the Earth, 8, 72–82. (In Russian: Зубков С.И. Термические предвестники землетрясений. Физика Земли. 1992, № 8, c. 72–82).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Novik, O., Smirnov, F., Volgin, M. (2019). Low-Resistivity Structures in the Seismically Active Lithosphere Zones and Observations of Electromagnetic Signals of Seismic Origin. In: Electromagnetic Geophysical Fields. Springer, Cham. https://doi.org/10.1007/978-3-319-98461-2_1

Download citation