Advertisement

Prototypes for Assistive Innovation

  • David HollarEmail author
Chapter

Abstract

Engineering advances have utilized a variety of physiological models to develop improved assistive devices for people with mobility limitations. Bioengineering models have included upper arm mobility; foot and lower limb stabilizations and supports for gait maintenance and improvement; improved limb replacement prosthetics; spinal supports; muscle stimulation; and improved traditional accessible devices, including motorized, multiple terrain wheelchairs. Models have incorporated human, primate, and equine performance physiologies. Much device development has been designed and tested for exercise and health promotion, although devices usually must be tailored to each person’s unique anatomical, physiological, social, and environmental needs for universal exercise access.

Acronymns

ADA

Americans with Disabilities Act

ADL

Activity of daily living

ANSI

American National Standards Institute

CE

Conformité Européene

EMG

Electromyographic (impulse)

FDA

US Food and Drug Administration

FES

Functional electrical stimulation

FNS

Functional neuromuscular stimulation

HCI

Human-computer interaction (or interface)

iBOT

Powered wheelchair that uses gyroscopes to balance and climb steps/terrain

IADL

Instrumental activity of daily living

ICF

International Classification of Functioning, Disability and Health

IMS

Inertial measurement system

ISO

International Organization for Standardization

LDS

Local dynamic stability

MOD

Mechatronic Orthotic Design

NCHPAD

National Center for Health, Physical Activity, and Disability

NIDILRR

National Institute on Disability, Independent Living, and Rehabilitation Research

RERC

Rehabilitation Engineering Research Center

RESNA

Rehabilitation Engineering Society of North America

RRTC

Rehabilitation Research and Training Center

RSP

Running-specific prosthesis

SCI

Spinal cord injury

TBI

Traumatic brain injury

References

  1. Asheghan, M., Hollisaz, M. T., Taheri, T., Kazemi, H., & Aghda, A. K. (2016). The prevalence of carpel tunnel syndrome among long-term manual wheelchair users with spinal cord injury: A cross-sectional study. The Journal of Spinal Cord Medicine, 39(3), 265–271.CrossRefGoogle Scholar
  2. Barmparas, G., Inaba, K., Teixeira, P. G., Dubose, J. J., Criscuoli, M., Talving, P., Plurad, D., Green, D., & Demetriades, D. (2010). Epidemiology of post-traumatic limb amputation: A National Trauma Databank analysis. The American Surgeon, 76(11), 1214–1222.PubMedGoogle Scholar
  3. Beck, O. N., Taboga, P., & Grabowski, A. M. (2016). Characterizing the mechanical properties of running-specific prostheses. PLoS One, 11(12), e0168298.  https://doi.org/10.1371/journal.pone.0168298.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beekhuis, J. H., Westerveld, A. J., van der Kooij, H., & Stienen, A. H. A. (2013, June 24–26). Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke. Proceedings of the 2013 IEEE international conference on rehabilitation robotics, Seattle, WA.Google Scholar
  5. Bergamini, E., Morelli, F., Marchetti, F., Vannozzi, G., Polidori, L., Paradisi, F., Traballesi, M., Cappozzo, A., & Delussu, A. S. (2015). Wheelchair propulsion biomechanics in junior basketball players: A method for the evaluation of the efficacy of a specific training program. BioMed Research International, 2015, 275965.  https://doi.org/10.1155/2015/275965.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Calabrò, R. S., Naro, A., Russo, M., Milardi, D., Leo, A., Filoni, S., Trinchera, A., & Bramanti, P. (2017). Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial. PLoS One, 12(10), e0185936.  https://doi.org/10.1371/journal.pone.0185936.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caputo, J. M., & Collins, S. H. (2014). Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Scientific Reports, 4, 7213.  https://doi.org/10.1038/srep07213.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chang, S. R., Nandor, M. J., Li, L., Kobetic, R., Foglyano, K. M., Schnellenberger, J. R., Audu, M. L., Pinault, G., Quinn, R. D., & Triolo, R. J. (2017). A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Journal of NeuroEngineering and Rehabilitation, 14, 48.  https://doi.org/10.1186/s12984-017-0258-6.
  9. Cooper, R. A., Cooper, R., & Boninger, M. L. (2008). Trends and issues in wheelchair technologies. Assistive Technology, 20(2), 61–72.CrossRefGoogle Scholar
  10. Dixon, J., Hatton, A. L., Robinson, J., Gamesby-Iyayi, H., Hodgson, D., Rome, K., Warnett, R., & Martin, D. J. (2014). Effect of textured insoles on balance and gait in people with multiple sclerosis: An exploratory trail. Physiotherapy, 100(2), 142–149.CrossRefGoogle Scholar
  11. Durban, C. M. C., Lee, S.-Y., & Lim, H.-C. (2015). Above-the-knee replantation in a child: A case report with a 24-year follow-up. Strategies in Trauma and Limb Reconstruction, 10, 189–193.CrossRefGoogle Scholar
  12. Faupin, A., Borel, B., Meyer, C., Gorce, P., & Watelain, E. (2013). Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting. Disability and Rehabilitation Assistive Technology, 8(6), 496–501.CrossRefGoogle Scholar
  13. Flaubert, J.L., Spicer, C.M., & Jette, A.M. (eds.), National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Committee on the Use of Selected Assistive Products and Technologies in Eliminating or Reducing the Effects of Impairments. (2017). The promise of assistive technology to enhance activity and work participation. Washington, DC: National Academies Press.Google Scholar
  14. Fritz, H., Patzer, D., & Galen, S. S. (2017). Robotic exoskeletons for reengaging in everyday activities: Promises, pitfalls, and opportunities. Disability and Rehabilitation, 1–4.  https://doi.org/10.1080/09638288.2017.1398786.
  15. Fuhrer, M. J., Jutai, J. W., Scherer, M. J., & DeRuyter, F. (2003). A framework for the conceptual modeling of assistive technology device outcomes. Disability and Rehabilitation, 25(22), 1243–1251.CrossRefGoogle Scholar
  16. Gebrosky, B., Pearlman, J., Cooper, R. A., Cooper, R., & Kelleher, A. (2013). Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards. Journal of Rehabilitation Research and Development, 50(10), 1373–1389.CrossRefGoogle Scholar
  17. Goosey-Tolfrey, V. (2010). Supporting the paralympic athlete: Focus on wheeled sports. Disability and Rehabilitation, 32(26), 2237–2243.CrossRefGoogle Scholar
  18. Grand View Research. (2016). Exoskeleton market revenue and volume analysis by type (mobile, stationary), by technology (drive system [pneumatic actuator, hydraulic actuator, electric servo, electric actuator, fully mechanical, shape memory alloy actuator, fuel cell]), by end-user (healthcare, military, industrial), and segment forecasts to 2025. San Francisco: Grand View Research, Inc. https://www.grandviewresearch.com/industry-analysis/exoskeleton-market. Accessed 3 Jan 2018.
  19. Harrand, J., & Bannigan, K. (2014). Do tilt-in-space wheelchairs increase occupational engagement: A critical literature review. Disability and Rehabilitation Assistive Technology, 11, 3–12.CrossRefGoogle Scholar
  20. Hartig, T., Mitchell, R., de Vries, S., & Frumkin, H. (2014). Nature and health. Annual Review of Public Health, 35, 207–228.CrossRefGoogle Scholar
  21. Hussain, S. (2014). State-of-the-art robotic gait rehabilitation orthoses: Design and control aspects. NeuroRehabilitation, 35(4), 701–709.PubMedGoogle Scholar
  22. International Campaign to Ban Landmines – Cluster Munition Coalition. (2017). Landmine monitor 2015. Geneva: Author.Google Scholar
  23. Jain, N. B., Higgins, L. D., Katz, J. N., & Garshick, E. (2010). Association of shoulder pain with the use of mobility devices in persons with chronic spinal cord injury. Physical Medicine and Rehabilitation, 2(10), 896–900.Google Scholar
  24. Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., & Roby-Brami, A. (2014). Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients. Frontiers in Human Neuroscience, 8, 947.  https://doi.org/10.3389/fnhum.2014.00947.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kluge, F., Gaβner, H., Hannink, J., Pasluosta, C., Klucken, J., & Eskofier, B. M. (2017). Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors, 17(7), e1522.  https://doi.org/10.3390/s17071522.CrossRefPubMedGoogle Scholar
  26. Kolakowsky-Hayner, S. A., Crew, J., Moran, S., & Shah, A. (2013). Safety and feasibility of using the Ekso™ bionic exoskeleton to aid ambulation after spinal cord injury. Journal of Spine, S4, 003.  https://doi.org/10.4172/2165-7939.S4-003.CrossRefGoogle Scholar
  27. Lane, A. K., & Benoit, D. (2011). Driving, brain injury and assistive technology. NeuroRehabilitation, 28(3), 221–229.PubMedGoogle Scholar
  28. Lenker, J. A., & Paquet, V. L. (2003). A review of conceptual models for assistive technology outcomes research and practice. Assistive Technology, 15(1), 1–15.  https://doi.org/10.1080/10400435.2003.10131885.CrossRefPubMedGoogle Scholar
  29. Lopez-Basterretxea, A., Mendez-Zorrilla, A., & Garcia-Zapirain, B. (2015). Eye/head tracking technology to improve HCI with iPad applications. Sensors, 15(2), 2244–2264.CrossRefGoogle Scholar
  30. Maggioni, S., Melendez-Calderon, A., van Asseldonk, E., Klamroth-Marganska, V., Lünenburger, L., Riener, R., & van der Kooij, H. (2016). Robot-aided assessment of lower extremity functions: A review. Journal of Neuroengineering and Rehabilitation, 13, 72.  https://doi.org/10.1186/s12984-016-0180-3.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meyer, A. J., Eskinazi, I., Jackson, J. N., Rao, A. V., Patten, C., & Fregly, B. J. (2016). Muscle synergies facilitate computational prediction of subject-specific walking motions. Frontiers in Bioengineering and Biotechnology, 4, 77.  https://doi.org/10.3389/fbioe.2016.00077.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miller, L. E., Zimmerman, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with meta-analysis. Medical Devices: Evidence and Research, 9, 455–466.CrossRefGoogle Scholar
  33. Munaretto, J. M., McNitt-Gray, J. L., Flashner, H., & Requejo, P. S. (2013). Reconfiguration of the upper extremity relative to the pushrim affects load distribution during wheelchair propulsion. Medical Engineering Physics, 35(8), 1141–1149.CrossRefGoogle Scholar
  34. Mustafa, M. B., Salim, S. S., Mohamed, N., Al-Qatab, B., & Siong, C. E. (2014). Severity-based adaptation with limited data for ASR to aid dysarthric speakers. PLoS One, 9(1), e86285.  https://doi.org/10.1371/journal.pone.0086285.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Onose, G., Cârdei, V., Crăciunoiu, S. T., Avramescu, V., Opriș, I., Lebedev, M. A., & Constantinescu, M. V. (2016). Mechatronic wearable exoskeletons for bionic bipedal standing and walking: A new synthetic approach. Frontiers in Neuroscience, 10, 343.  https://doi.org/10.3389/fnins.2016.00343.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Paton, J., Glasser, S., Collings, R., & Marsden, J. (2016). Getting the right balance: Insole design alters the static balance of people with diabetes and neuropathy. Journal of Foot and Ankle Research, 5(9), 40.  https://doi.org/10.1186/s13047-016-0172-3.CrossRefGoogle Scholar
  37. Pazzaglia, M., & Molinari, M. (2016). The embodiment of assistive devices – from wheelchair to exoskeleton. Physics Life Reviews, 16, 163–175.CrossRefGoogle Scholar
  38. Pereira, C. A. M., Neto, R. B., Reynaldo, A. C., de Miranda Luzo, M. A., & Oliveira, R. P. (2009). Development and evaluation of a head-controlled human-computer interface with mouse-like functions for physically-disabled users. Clinics, 64(10), 975–981.CrossRefGoogle Scholar
  39. Pirondini, E., Coscia, M., Marcheschi, S., Roas, G., Salsedo, F., Frisoli, A., Bergamasco, M., & Micera, S. (2016). Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: A pilot study on healthy subjects. Journal of NeuroEngineering and Rehabilitation, 13, 9.  https://doi.org/10.1186/s12984-016-0117-x.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rapport, L. J., Bryer, R. C., & Hanks, R. A. (2008). Driving and community integration after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 922–930.CrossRefGoogle Scholar
  41. Requejo, P. S., Furumasu, J., & Mulroy, S. J. (2015). Evidence-based strategies for preserving mobility for elderly and aging manual wheelchair users. Topics in Geriatric Rehabilitation, 31(1), 26–41.CrossRefGoogle Scholar
  42. Resnik, L., Fantini, C., Latlief, G., Phillips, S., Sasson, N., & Sepulveda, E. (2017). Use of the DEKA Arm for amputees with brachial plexus injury: A case series. PLoS One, 12(6), e0178642.  https://doi.org/10.1371/journal.pone.0178642.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Reynard, F., Vuadens, P., Dériaz, O., & Terrier, P. (2014). Could local dynamic stability serve as an early predictor of falls in patients with moderate neurological gait disorders? A reliability and comparison study in healthy individuals and in patients with paresis of the lower extremities. PLoS One, 9(6), e100550.  https://doi.org/10.1371/journal.pone.0100550.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Riskowski, J., Dufour, A. B., & Hannan, M. T. (2011). ArRthritis, foot pain & shoe wear: Current musculoskeletal research on feet. Current Opinion in Rheumatology, 23(2), 148–155.CrossRefGoogle Scholar
  45. Russell, I. M., Raina, S., Requejo, P. S., Wilcox, R. R., Mulroy, S., & McNitt-Gray, J. L. (2015). Modifications in wheelchair propulsion technique with speed. Frontiers in Bioengineering and Biotechnology, 3, 171.  https://doi.org/10.3389/fbioe.2015.00171.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shin, J. Y., Ryu, Y. U., & Yi, C. W. (2016). Effects of insoles contact on static balance. Journal of Physical Therapy Science, 28(4), 1241–1244.CrossRefGoogle Scholar
  47. Simpson, R. C., LoPresti, E. F., & Cooper, R. A. (2008). How many people would benefit from a smart wheelchair? Journal of Rehabilitation Research and Development, 45(1), 53–71.CrossRefGoogle Scholar
  48. Terrier, P., Luthi, F., & Dériaz, O. (2013). Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries. BMC Musculoskeletal Disorders, 14, 94.  https://doi.org/10.1186/1471-2474-14-94.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Varma, P., Stineman, M. G., & Dillingham, T. R. (2014). Epidemiology of limb loss. Physical Medicine and Rehabilitation Clinics of North America, 25(1), 1–8.CrossRefGoogle Scholar
  50. Weissenbacher, A., Hautz, T., Pierer, G., Ninkovic, M., Zelger, B. G., Zelger, B., Löscher, Rieger, M., Kumnig, M., Rumpold, G., Piza-Katzer, P., Bauer, T., Zimmermann, R., Gabl, M., Arora, R., Ninkovic, M., Margeiter, R., Brandacher, G., Schneeberger, S., & RTI-Group Innsbruck. (2014). Hand transplantation in its fourteenth year: The Innsbruck experience. Vascularized Composite Allotransplantation, 1(1–2), 11–21.  https://doi.org/10.4161/23723505.2014.973798.CrossRefGoogle Scholar
  51. Wilson, E. O. (1988). Biodiversity. Washington, DC: National Academy of Sciences/Smithsonian Institution.Google Scholar
  52. Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016). Active lower limb prosthetics, a systematic review of design issues and solutions. BioMedical Engineering OnLine, 15(Suppl 3), 140.  https://doi.org/10.1186/s12938-016-0284-9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Woods, B., & Watson, N. (2003). A short history of powered wheelchairs. Assistive Technology, 15(2), 164–180.CrossRefGoogle Scholar
  54. Woods, B., & Watson, N. (2004). The social and technological history of wheelchairs. International Journal of Therapy and Rehabilitation, 11(9), 407–410.CrossRefGoogle Scholar
  55. Woods, B., & Watson, N. (2010). A short history of powered wheelchairs. Assistive Technology, 15(2), 164–180.CrossRefGoogle Scholar
  56. World Health Organization. (2000). The international classification of functioning, disability and health (ICF). Geneva: Author.Google Scholar
  57. Zhan, Z., Zhang, L., Mei, H., & Fong, P. S. W. (2016). Online learners’ reading ability detection based on eye-tracking sensors. Sensors, 16(9), 1457.  https://doi.org/10.3390/s16091457.CrossRefGoogle Scholar
  58. Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422–429.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Health Administration, Pfeiffer UniversityMisenheimerUSA

Personalised recommendations