Musculoskeletal Physiology, Disability, and Exercise

  • David HollarEmail author


For exercise and health to be maximized for people living with mobility limitations, the external environment must be modified. However, at the same time, human physiology must be carefully addressed, specifically neuroendocrine, muscular, and bone development and their maintenance/optimal functioning. Both the external and internal environments are unique to each individual person and their situation with respect to ability/disability. With respect to internal physiology and its impact upon functioning, we must understand that the human body is a complex system that consists of interacting subsystems that positively and negatively regulate each other. Furthermore, cells and tissues both cooperate and compete with one another under these regulatory systems in an ecological fashion that is quite similar to the external environments of animals, plants, and microbes for a given biome. Exercise and health, besides maintaining body structures and preventing obesity, involve natural physiological controls whose effects impact every aspect of human health. Enhancing bone, muscle, and neuroendocrine functioning can benefit the functioning of people living with mobility limitations so that they can live independent, healthy lives.



Bone morphogenetic proteins


Bone remodeling unit


Cluster of differentiation (many types of immune cell membrane glycoproteins)


Ciliary neurotrophic factor


C-reactive protein


Family with sequence similarity 5, member C myokine


Fibroblast growth factor


Growth differentiation factor


Human leukocyte antigen


Hypothalamic-pituitary-adrenal axis


International Classification of Functioning, Disability and Health




Insulin-like growth factor




Monocyte chemoattractant protein


Major histocompatibility complex


Macrophage inflammatory protein


Matrix metalloproteinase


Nucleosome assembly protein


Neuromuscular electrical stimulation


Parathyroid hormone


Regulated on activation, normal T cell expressed and secreted


Spinal cord injury


Signaling molecule for TGF-beta receptor molecules


Traumatic brain injury


Transforming growth factor


Cell-mediated (pro-inflammatory) immunity


Humoral- or antibody-mediated immunity


Tumor necrosis factor


Wingless integration proto-oncogene


  1. Ademowo, O. S., Dias, H. K. I., Burton, D. G. A., & Griffiths, H. R. (2017). Lipid (per) oxidation in mitochondria: An emerging target in the ageing process? Biogerontology, 18, 859–879.CrossRefGoogle Scholar
  2. Arron, J. R., & Choi, Y. (2000). Bone versus immune system. Nature, 408, 535–536.CrossRefGoogle Scholar
  3. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.CrossRefGoogle Scholar
  4. Besedovsky, H. O., & Del Rey, A. (1996). Immune-neuro-endocrine interactions: Facts and hypotheses. Endocrine Reviews, 17(1), 64–102.CrossRefGoogle Scholar
  5. Bloch, S. A. A., Syburrah, T., Rosendahl, U., Kemp, P. R., Griffiths, M. J. D., & Polkey, M. I. (2014). A paradoxical rise in rectus femoris myotatin (GDF-8) and GDF-15 in response to neuromuscular electrical stimulation in critical care. Thorax, 69(Suppl 2), A74.CrossRefGoogle Scholar
  6. Cohen, J. (2002). The immunopathogenesis of sepsis. Nature, 420, 885–891.CrossRefGoogle Scholar
  7. Cyster, J. G. (1999). Chemokines and cell migration in secondary lymphoid organs. Science, 286, 2098–2102.CrossRefGoogle Scholar
  8. Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118(2), 503–508.CrossRefGoogle Scholar
  9. Dorshkind, K., & Horseman, N. D. (2000). The roles of prolactin, growth hormone, insulin-like growth factor I, and thyroid hormones in lymphocyte development and function: Insights from genetic models of hormone and hormone receptor deficiency. Endocrine Reviews, 21(3), 292–312.PubMedGoogle Scholar
  10. Dustin, M. L., & Chan, A. C. (2000). Signaling takes shape in the immune system. Cell, 103, 283–294.CrossRefGoogle Scholar
  11. Eriksen, E. F., Axelrod, D. W., & Melsen, F. (1994). Bone histomorphometry. New York: Raven Press.Google Scholar
  12. Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 69(Suppl 1), S4–S9. Scholar
  13. Francis, P., Lyons, M., Piasecki, M., McPhee, J., Hind, K., & Jakeman, P. (2017a). Measurement of muscle health in aging. Biogerontology, 18, 901–911.CrossRefGoogle Scholar
  14. Francis, P., McCormack, W., Toomey, C., Norton, C., Saunders, J., Kerin, E., Lyons, M., & Jakeman, P. (2017b). Twelve weeks’ progressive resistance training combined with protein supplementation beyond habitual intakes increases upper leg lean tissue mass, muscle strength and extended gait speed in healthy older women. Biogerontology, 18, 881–891.CrossRefGoogle Scholar
  15. Gravallese, E. M. (2003). Osteopontin: A bridge between bone and the immune system. The Journal of Clinical Investigation, 112(2), 147–149.CrossRefGoogle Scholar
  16. Hammell, K. W. (2004). Exploring quality of life following high spinal cord injury: A review and critique. Spinal Cord, 42(9), 491–502.CrossRefGoogle Scholar
  17. Hollar, D. W. (2000). Bone changes and disorders. In P. Roberts (Ed.), Aging (pp. 105–109). Pasadena: Salem Press.Google Scholar
  18. Hollar, D. (2013). Cross-sectional patterns of allostatic load among persons with varying disabilities, NHANES: 2001–2010. Disability and Health Journal, 6, 177–187.CrossRefGoogle Scholar
  19. Hollar, D. (2017a). Understanding the evolutionary historical background behind the trajectories in human health and disease. In D. Hollar (Ed.), Trajectory analysis in health care. New York: Springer.Google Scholar
  20. Hollar, D. (2017b). Biomarkers of chondriome topology and function: Implications for the extension of healthy aging. Biogerontology, 18, 201. Scholar
  21. Hollar, D., & Lewis, J. (2015). Heart age differentials and general cardiovascular risk profiles for persons with varying disabilities: NHANES 2001–2010. Disability and Health Journal, 8, 51–60.CrossRefGoogle Scholar
  22. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867.CrossRefGoogle Scholar
  23. Huang, S. C., May-Kuen, W. A., Lien, H. Y., Fuk-Tan, T. S., Fu, T. C., Lin, Y., & Wang, J. S. (2013). Systematic vascular resistance is increased and associated with accelerated arterial stiffening change in patients with chronic cervical spinal cord injury. European Journal of Physical Rehabilitation Medicine, 49(1), 41–49.PubMedGoogle Scholar
  24. Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururai, G., & Kobusingye, O. C. (2007). The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation, 22(5), 341–353.PubMedGoogle Scholar
  25. Jain, N. B., Ayers, G. D., Peterson, E. N., Harris, M. B., Morse, L., O’Connor, K. C., & Garshick, E. (2015). Traumatic spinal cord injury in the United States, 1993–2012. JAMA, 313(22), 2236–2243.CrossRefGoogle Scholar
  26. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.CrossRefGoogle Scholar
  27. Kaji, H. (2016). Effects of myokines on bone. BoneKEy Reports, 5, 826. Scholar
  28. Krassioukov, A., Eng, J. J., Warburton, E. R., Teasell, R., & The SCIRE Research Team. (2009). A systematic review of the management of orthostatic hypotension following spinal cord injury. Archives of Physical Medicine and Rehabilitation, 90(5), 876–885.CrossRefGoogle Scholar
  29. Lee, S.-J., Reed, L. A., Davies, M. V., Girgenrath, S., Goad, M. E. P., Tomkinson, K. N., Wright, J. F., Barker, C., Ehrmantraut, G., Holmstrom, J., Trowell, B., Gertz, B., Jiang, M.-S., Sebald, S. M., Matzuk, M., Li, E., Liang, L.-F., Quattlebaum, E., Stotish, R. L., & Wolfman, N. M. (2005). Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proceedings of the National Academy of Sciences USA, 102(50), 18117–18122.CrossRefGoogle Scholar
  30. Lee, B. B., Cripps, R. A., Fitzharris, M., & Wing, P. C. (2014). The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord, 52(2), 110–116.CrossRefGoogle Scholar
  31. Leopold, A. (1949). A sand county almanac. New York: Oxford University Press.Google Scholar
  32. Luongo, M. A., & Pazzaglia, M. (2016). Commentary: Body image distortion and exposure to extreme body types: Contingent adaptation and cross adaptation for self and other. Frontiers in Human Neuroscience, 10, 526. Scholar
  33. Ma, V. Y., Chan, L., & Carruthers, K. J. (2014). The incidence, prevalence, costs and impact on disability of common conditions requiring rehabilitation in the US: Stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Archives of Physical Medicine and Rehabilitation, 95(5), 986–995, e1. Scholar
  34. Morse, L. R., Stolzmann, K., Nguyen, H. P., Jain, N. B., Zayac, C., Gagnon, D. R., Tun, C. G., & Garshick, E. (2008). Association between mobility mode and C-reactive protein levels in men with chronic spinal cord injury. Archives of Physical Medicine and Rehabilitation, 89(4), 726–731.CrossRefGoogle Scholar
  35. Opal, S. M., & DePalo, V. A. (2000). Anti-inflammatory cytokines. Chest, 117(4), 1162–1172.CrossRefGoogle Scholar
  36. Powell, K. (2005). Stem cell niches: It’s the ecology, stupid! Nature, 435, 268–270.CrossRefGoogle Scholar
  37. Richards, D. M., Hettinger, J., & Feuerer, M. (2013). Monocytes and macrophages in cancer: Development and functions. Cancer Microenvironment, 6, 179–191.CrossRefGoogle Scholar
  38. Ricklefs, R. E., & Finch, C. E. (1995). Aging : A natural history. New York: Scientific American Library.Google Scholar
  39. Rimmer, J. H., Schiller, W., & Chen, M.-D. (2012). Effects of disability-associated low energy expenditure deconditioning syndrome. Exercise and Sport Sciences Reviews, 40(1), 22–29.CrossRefGoogle Scholar
  40. Romanello, V., Gguadagnin, E., Gomes, L., Roder, I., Sandri, C., Petersen, Y., Milan, G., Masiero, E., Del Piccolo, P., Foretz, M., Scorrano, L., Rudolf, R., & Sandri, M. (2010). Mitochondrial fission and remodeling contributes to muscle atrophy. EMBO Journal, 29(10), 1774–1785.CrossRefGoogle Scholar
  41. Rosenberg, D. E., Bombardier, C. H., Hoffman, J. M., & Belza, B. (2011). Physical activity among persons aging with mobility disabilities: Shaping a research agenda. Journal of Aging Research, 2011, 708510. Scholar
  42. Santos, L., Elliott-Sale, K. J., & Sale, C. (2017). Exercise and bone health across the lifespan. Biogerontology, 18, 931–946.CrossRefGoogle Scholar
  43. Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1, 1383–1391.CrossRefGoogle Scholar
  44. Sternberg, E. M. (1997). Neural-immune interactions in health and disease. The Journal of Clinical Investigation, 100(11), 2641–2647.CrossRefGoogle Scholar
  45. Sun, X., Jones, Z. B., Chen, X.-M., Zhou, L., So, K.-F., & Ren, Y. (2016). Multiple organ dysfunction and systemic inflammation after spinal cord injury: A complex relationship. Journal of Neuroinflammation, 13, 260. Scholar
  46. Thom, R. (1972). Structural stability and morphogenesis. New York: W.A. Benjamin.Google Scholar
  47. Turnbull, A. V., & Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiological Reviews, 79(1), 1–71.CrossRefGoogle Scholar
  48. Waxweiler, R. J., Thurman, D., Sniezek, J., Sosin, D., & O’Neil, J. (1995). Monitoring the impact of traumatic brain injury – A review and update. Journal of Neurotrauma, 12(4), 509–516.CrossRefGoogle Scholar
  49. Werlen, G., Hausmann, B., Naeher, D., & Palmer, E. (2003). Signaling life and death in the thymus: Timing is everything. Science, 299, 1859–1863.CrossRefGoogle Scholar
  50. Wilson, E. O. (2016). Half-earth: Our planet’s fight for life. New York: Liveright/W.W. Norton & Company.Google Scholar
  51. World Health Organization. (2001). The international classification of functioning, disability and health. Geneva: Author.Google Scholar
  52. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., & Hauser, C. J. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 464, 104–108.CrossRefGoogle Scholar
  53. Zimmers, T. A., Davies, M. V., Koniaris, L. G., Haynes, P., Esquela, A. F., Tomkinson, K. N., McPherron, A. C., Wolfman, N. M., & Lee, S.-J. (2002). Induction of cachexia in mice by systemically administered myostatin. Science, 296, 1486–1488.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Health AdministrationPfeiffer UniversityMisenheimerUSA

Personalised recommendations