The Case of p-Laplacian Operator

  • Messoud Efendiev
Part of the Fields Institute Monographs book series (FIM, volume 36)


We are interested in quasilinear elliptic problems over a half-space of the form
$$\displaystyle\left \{ \begin {array}{l}\Delta _p u+f(u)=0 \mbox{ in } \mathbb {R}_+\times \mathbb {R}^{N-1},\\ u(0, x_2,\ldots , x_N)=u_0(x_2,\ldots , x_N), \end {array} \right .$$
and similar problems over a quarter-space
$$\displaystyle\left \{ \begin {array}{l} \Delta _p u+f(u)=0 \mbox{ in } \mathbb {R}_+\times \mathbb {R}^{N-2}\times \mathbb {R}_+,\\ u(0, x_2,\ldots , x_N)=u_0(x_2,\ldots , x_N),\\ u(x_1,x_2,\ldots , x_{N-1}, 0)=0. \end {array} \right .$$


  1. 13.
    H. Berestycki, L. Caffarelli, and L. Nirenberg. “Monotonicity for elliptic equations in unbounded Lipschitz domains.” English. In: Commun. Pure Appl. Math. 50.11 (1997), pp. 1089–1111.MathSciNetCrossRefGoogle Scholar
  2. 27.
    M.-F. Bidaut-Véron and S. Pohozaev. “Nonexistence results and estimates for some nonlinear elliptic problems.” English. In: J. Anal. Math. 84 (2001), pp. 1–49.MathSciNetCrossRefGoogle Scholar
  3. 38.
    E. N. Dancer and Y. Du. “Some remarks on Liouville type results for quasilinear elliptic equations.” English. In: Proc. Am. Math. Soc. 131.6 (2003), pp. 1891–1899.Google Scholar
  4. 41.
    Y. Du and Z. Guo. “Liouville type results and eventual flatness of positive solutions for p-Laplacian equations.” English. In: Adv. Differ. Equ. 7.12 (2002), pp. 1479–1512.Google Scholar
  5. 42.
    Y. Du and Z. Guo. “Symmetry for elliptic equations in a half-space without strong maximum principle.” English. In: Proc. R. Soc. Edinb., Sect. A, Math. 134.2 (2004), pp. 259–269.MathSciNetCrossRefGoogle Scholar
  6. 51.
    M. A. Efendiev and F. Hamel. “Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: two approaches.” English. In: Adv. Math. 228.2 (2011), pp. 1237–1261.MathSciNetCrossRefGoogle Scholar
  7. 58.
    A. Farina, L. Montoro, and B. Sciunzi. “Monotonicity and one-dimensional symmetry for solutions of − Δp u = f(u) in half-spaces.” English. In: Calc. Var. Partial Differ. Equ. 43.1–2 (2012), pp. 123–145.Google Scholar
  8. 70.
    B. Kawohl. Rearrangements and convexity of level sets in PDE. English. Lecture Notes in Mathematics. 1150. Berlin etc.: Springer-Verlag. V, 136 p. DM 21.50 (1985). 1985.Google Scholar
  9. 94.
    J. Serrin. “Nonlinear elliptic equations of second order”. Lectures at AMS Symposium on Partial Differential Equations, Berkeley. 1971.zbMATHGoogle Scholar
  10. 95.
    J. Serrin and H. Zou. “Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities.” English. In: Acta Math. 189.1 (2002), pp. 79–142.MathSciNetCrossRefGoogle Scholar
  11. 99.
    P. Tolksdorf. “On the Dirichlet problem for quasilinear equations in domains with conical boundary points.” English. In: Commun. Partial Differ. Equations 8 (1983), pp. 773–817.Google Scholar
  12. 100.
    P. Tolksdorf. “Regularity for a more general class of quasilinear equations.” English. In: J. Differ. Equations 51 (1984), pp. 126–150.Google Scholar
  13. 102.
    J. Vázquez. “A strong maximum principle for some quasilinear elliptic equations.” English. In: Appl. Math. Optim. 12 (1984), pp. 191–202.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Messoud Efendiev
    • 1
  1. 1.Institute of Computational BiologyHelmholtz Center MunichNeuherbergGermany

Personalised recommendations