Advertisement

Trajectory Dynamical Systems and Their Attractors

  • Messoud Efendiev
Chapter
Part of the Fields Institute Monographs book series (FIM, volume 36)

Abstract

We start with the definition of Kolmogorov ε-entropy, via which we define fractal dimension of the compact set in the metric space. We will use these two concepts in the sequel.

References

  1. 1.
    A. V. Babin and M. I. Vishik. Attractors of evolution equations. Transl. from the Russian by A. V. Babin. English. Amsterdam etc.: North-Holland, 1992, pp. x + 532.Google Scholar
  2. 8.
    A. V. Babin. “Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain”. In: Russian Acad. Sci. Izv. Math. 44 (1995), pp. 207–223.MathSciNetCrossRefGoogle Scholar
  3. 13.
    H. Berestycki, L. Caffarelli, and L. Nirenberg. “Monotonicity for elliptic equations in unbounded Lipschitz domains.” English. In: Commun. Pure Appl. Math. 50.11 (1997), pp. 1089–1111.MathSciNetCrossRefGoogle Scholar
  4. 15.
    H. Berestycki, M. A. Efendiev, and S. Zelik. “Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains.” English. In: Nonlinear Bound. Value Probl. 14 (2004), pp. 3–15.Google Scholar
  5. 18.
    H. Berestycki and L. Nirenberg. “On the method of moving planes and the sliding method.” English. In: Bol. Soc. Bras. Mat., Nova Sér. 22.1 (1991), pp. 1–37.Google Scholar
  6. 19.
    H. Berestycki and L. Nirenberg. Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains. English. Analysis, et cetera, Res. Pap. in Honor of J. Moser’s 60th Birthd., 115–164 (1990). 1990.CrossRefGoogle Scholar
  7. 21.
    H. Berestycki, L. Caffarelli, and L. Nirenberg. “Further qualitative properties for elliptic equations in unbounded domains.” English. In: Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25.1-2 (1997), pp. 69–94.Google Scholar
  8. 23.
    H. Berestycki and P.-L. Lions. “Nonlinear scalar field equations. I: Existence of a ground state.” English. In: Arch. Ration. Mech. Anal. 82 (1983), pp. 313–345.Google Scholar
  9. 25.
    H. Berestycki and L. Nirenberg. “Travelling fronts in cylinders.” English. In: Ann. Inst. Henri Poincaé, Anal. Non Linéaire 9.5 (1992), pp. 497–572.MathSciNetCrossRefGoogle Scholar
  10. 29.
    P. Brunovský, X. Mora, P. Poláčik, and J. Solà-Morales. “Asymptotic behavior of solutions of semilinear elliptic equations on an unbounded strip.” English. In: Acta Math. Univ. Comen., New Ser. 60.2 (1991), pp. 163–183.Google Scholar
  11. 30.
    J. Busca and P. Felmer. “Qualitative properties of some bounded positive solutions to scalar field equations.” English. In: Calc. Var. Partial Differ. Equ. 13.2 (2001), pp. 191–211.MathSciNetCrossRefGoogle Scholar
  12. 31.
    A. Calsina, X. Mora, and J. Solà-Morales. “The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit.” English. In: J. Differ. Equations 102.2 (1993), pp. 244–304.MathSciNetCrossRefGoogle Scholar
  13. 32.
    V. V. Chepyzhov and M. I. Vishik. “Evolution equations and their trajectory attractors.” English. In: J. Math. Pures Appl. (9) 76.10 (1997), pp. 913–964.Google Scholar
  14. 33.
    V. V. Chepyzhov and M. I. Vishik. “Non-autonomous evolutionary equations with translation-compact symbols and their attractors.” English. In: C. R. Acad. Sci., Paris, Sér. I 321.2 (1995), pp. 153–158.Google Scholar
  15. 34.
    V. V. Chepyzhov and M. I. Vishik. “Trajectory attractors for evolution equations.” English. In: C. R. Acad. Sci., Paris, Sér. I 321.10 (1995), pp. 1309–1314.Google Scholar
  16. 35.
    V. Chepyzhov and M. Vishik. Attractors for equations of mathematical physics. English. Providence, RI: American Mathematical Society (AMS), 2002, pp. xi +363.Google Scholar
  17. 36.
    V. Chepyzhov and M. Vishik. “Attractors of non-autonomous dynamical systems and their dimension.” English. In: J. Math. Pures Appl. (9) 73.3 (1994), pp. 279–333.Google Scholar
  18. 40.
    M. Dauge. Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. English. Berlin etc.: Springer-Verlag, 1988, pp. viii + 259.Google Scholar
  19. 46.
    M. A. Efendiev. Attractors for degenerate parabolic type equations. English. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Matemática Española (RSME), 2013, pp. x + 221.zbMATHGoogle Scholar
  20. 47.
    M. A. Efendiev. Evolution equations arising in the modelling of life sciences. English. New York, NY: Birkhäuser/Springer, 2013, pp. xii + 217.CrossRefGoogle Scholar
  21. 48.
    M. A. Efendiev. Finite and infinite dimensional attractors for evolution equations of mathematical physics. English. Tokyo: Gakkōtosho, 2010, pp. ii + 239.Google Scholar
  22. 49.
    M. A. Efendiev. Fredholm structures, topological invariant and applications. English. Springfield, MO: American Institute of Mathematical Sciences, 2009, pp. x + 205.Google Scholar
  23. 52.
    M. A. Efendiev and S. V. Zelik. “The attractor for a nonlinear reaction-diffusion system in an unbounded domain.” English. In: Commun. Pure Appl. Math. 54.6 (2001), pp. 625–688.MathSciNetCrossRefGoogle Scholar
  24. 65.
    B. Gidas, W.-M. Ni, and L. Nirenberg. “Symmetry and related properties via the maximum principle.” English. In: Commun. Math. Phys. 68 (1979), pp. 209–243.MathSciNetCrossRefGoogle Scholar
  25. 67.
    J. K. Hale. Asymptotic behavior of dissipative systems. English. Providence, RI: American Mathematical Society, 1988, pp. ix + 198.Google Scholar
  26. 69.
    V. Hutson, J. S. Pym, and M. J. Cloud. Applications of functional analysis and operator theory. 2nd ed. English. 2nd ed. Amsterdam: Elsevier, 2005, pp. xiv + 426.Google Scholar
  27. 73.
    A. Kolmogorov and V. Tikhomirov. “ε-entropy and ε-capacity of sets in function spaces.” English. In: Transl., Ser. 2, Am. Math. Soc. 17 (1959), pp. 227–364.Google Scholar
  28. 74.
    M. Krasnosel’skij. Topological methods in the theory of nonlinear integral equations. Translated by A.H. Armstrong. English. International Series of Monographs on Pure and Applied Mathematics. 45. Oxford etc.: Pergamon Press. XI, 395 p. (1964). 1964.Google Scholar
  29. 75.
    M. K. Kwong. “Uniqueness of positive solutions of Δu − u + up = 0 in Rn.” English. In: Arch. Ration. Mech. Anal. 105.3 (1989), pp. 243–266.Google Scholar
  30. 76.
    O. Ladyzhenskaya and N. Ural’tseva. Linear and quasilinear elliptic equations. Mathematics in Science and Engineering. Elsevier Science, 1968.zbMATHGoogle Scholar
  31. 78.
    J. Lions and E. Magenes. Problèmes aux limites non homogenes et applications. Vol. 1, 2. French. Paris: Dunod 1: XIX, 372 p.; 2: XV, 251 p. (1968). 1968.Google Scholar
  32. 86.
    H. H. Schaefer. Topological vector spaces. 4th corr. printing. English. Graduate Texts in Mathematics, 3. New York-Heidelberg-Berlin: Springer- Verlag. XI, 294 p. DM 48.00; $ 28.40 (1980). 1980.Google Scholar
  33. 98.
    R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. 2nd ed. English. 2nd ed. New York, NY: Springer, 1997, pp. xxi + 648.CrossRefGoogle Scholar
  34. 101.
    H. Triebel. Interpolation theory, function spaces, differential operators. 2nd rev. a. enl. ed. English. 2nd rev. a. enl. ed. Leipzig: Barth, 1995, p. 532.Google Scholar
  35. 103.
    M. Vishik and S. Zelik. “The trajectory attractor of a nonlinear elliptic system in a cylindrical domain.” English. In: Sb. Math. 187.12 (1996), 1755–1789 (1996); translation from mat. sb. 187, no. 12, 21–56.MathSciNetCrossRefGoogle Scholar
  36. 104.
    A. Vol’pert and S. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. English. Mechanics: Analysis, 8. Dordrecht - Boston - Lancaster: Martinus Nijhoff Publishers, a member of the Kluwer Academic Publishers Group. XVIII, 678 p. Dfl. 340.00; $ 117.50; £86.50 (1985). 1985.Google Scholar
  37. 106.
    E. Zeidler. Nonlinear functional analysis and its applications. Volume I: Fixed-point theorems. Translated from the German by Peter R. Wadsack. 2. corr. printing. English. 2. corr. printing. New York: Springer-Verlag, 1993, pp. xxiii + 909.Google Scholar
  38. 107.
    S. Zelik. “The dynamics of fast non-autonomous travelling waves and homogenization.” English. In: Actes des journées “Jeunes numériciens” en l’honneur du 60ème anniversaire du Professeur Roger Temam, Poitiers, France, Mars 9–10, 2000. Poitou-Charentes: Atlantique, 2001, pp. 131–142.Google Scholar
  39. 108.
    S. Zelik. “A trajectory attractor of a nonlinear elliptic system in an unbounded domain.” English. In: Math. Notes 63.1 (1998), 120–123 (1998); translation from mat. zametki 63, no. 1, 135–138.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Messoud Efendiev
    • 1
  1. 1.Institute of Computational BiologyHelmholtz Center MunichNeuherbergGermany

Personalised recommendations