• Messoud Efendiev
Part of the Fields Institute Monographs book series (FIM, volume 36)


In this chapter, we present notation and generally known facts (mostly without proofs) that we use to state and derive the results of the subsequent chapters.


  1. 2.
    R. A. Adams. Sobolev spaces. English. Pure and Applied Mathematics, 65. A Series of Monographs and Textbooks. New York-San Francisco-London: Academic Press, Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers. XVIII, 268 p. $ 24.50 (1975). 1975.Google Scholar
  2. 3.
    S. Agmon, A. Douglis, and L. Nirenberg. “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I.” English. In: Commun. Pure Appl. Math. 12 (1959), pp. 623–727.MathSciNetCrossRefGoogle Scholar
  3. 4.
    M. Agranovich. “Elliptic singular integro-differential operators.” Russian. In: Usp. Mat. Nauk 20.5(125) (1965), pp. 3–120.Google Scholar
  4. 7.
    N. Aronszajn and E. Gagliardo. “Interpolation spaces and interpolation methods.” English. In: Ann. Mat. Pura Appl. (4) 68 (1965), pp. 51–117.Google Scholar
  5. 14.
    H. Berestycki, L. Caffarelli, and L. Nirenberg. “Symmetry for elliptic equations in a half space.” English. In: Boundary value problems for partial differential equations and applications. Dedicated to Enrico Magenes on the occasion of his 70th birthday. Paris: Masson, 1993, pp. 27–42.Google Scholar
  6. 17.
    H. Berestycki and L. Nirenberg. “Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations.” English. In: J. Geom. Phys. 5.2 (1988), pp. 237–275.MathSciNetCrossRefGoogle Scholar
  7. 18.
    H. Berestycki and L. Nirenberg. “On the method of moving planes and the sliding method.” English. In: Bol. Soc. Bras. Mat., Nova Sér. 22.1 (1991), pp. 1–37.Google Scholar
  8. 20.
    H. Berestycki, L. Nirenberg, and S. Varadhan. “The principal eigenvalue and maximum principle for second-order elliptic operators in general domains.” English. In: Commun. Pure Appl. Math. 47.1 (1994), pp. 47–92.MathSciNetCrossRefGoogle Scholar
  9. 26.
    O. Besov, V. Il’in, and S. Nikol’skij. Integral’nye predstavleniya funktsij i teoremy vlozheniya. Russian. 2nd ed., rev. and compl. Moskva: Nauka. Fizmatlit, 1996, p. 480.Google Scholar
  10. 35.
    V. Chepyzhov and M. Vishik. Attractors for equations of mathematical physics. English. Providence, RI: American Mathematical Society (AMS), 2002, pp. xi +363.Google Scholar
  11. 40.
    M. Dauge. Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. English. Berlin etc.: Springer-Verlag, 1988, pp. viii + 259.Google Scholar
  12. 46.
    M. A. Efendiev. Attractors for degenerate parabolic type equations. English. Providence, RI: American Mathematical Society (AMS); Madrid: Real Sociedad Matemática Española (RSME), 2013, pp. x + 221.zbMATHGoogle Scholar
  13. 47.
    M. A. Efendiev. Evolution equations arising in the modelling of life sciences. English. New York, NY: Birkhäuser/Springer, 2013, pp. xii + 217.CrossRefGoogle Scholar
  14. 48.
    M. A. Efendiev. Finite and infinite dimensional attractors for evolution equations of mathematical physics. English. Tokyo: Gakkōtosho, 2010, pp. ii + 239.Google Scholar
  15. 53.
    M. Esteban and P.-L. Lions. “Existence and non-existence results for semilinear elliptic problems in unbounded domains.” English. In: Proc. R. Soc. Edinb., Sect. A, Math. 93 (1982), pp. 1–14.MathSciNetCrossRefGoogle Scholar
  16. 63.
    P. M. Fitzpatrick and J. Pejsachowicz. An extension of the Leray-Schauder degree for fully nonlinear elliptic problems. English. Nonlinear functional analysis and its applications, Proc. Summer Res. Inst., Berkeley/Calif. 1983, Proc. Symp. Pure Math. 45/1, 425–438 (1986). 1986.Google Scholar
  17. 64.
    L. Fraenkel. An introduction to maximum principles and symmetry in elliptic problems. Reprint of the 2000 hardback edition. English. Reprint of the 2000 hardback edition. Cambridge: Cambridge University Press, 2011, pp. x + 340.Google Scholar
  18. 65.
    B. Gidas, W.-M. Ni, and L. Nirenberg. “Symmetry and related properties via the maximum principle.” English. In: Commun. Math. Phys. 68 (1979), pp. 209–243.MathSciNetCrossRefGoogle Scholar
  19. 74.
    M. Krasnosel’skij. Topological methods in the theory of nonlinear integral equations. Translated by A.H. Armstrong. English. International Series of Monographs on Pure and Applied Mathematics. 45. Oxford etc.: Pergamon Press. XI, 395 p. (1964). 1964.Google Scholar
  20. 78.
    J. Lions and E. Magenes. Problèmes aux limites non homogenes et applications. Vol. 1, 2. French. Paris: Dunod 1: XIX, 372 p.; 2: XV, 251 p. (1968). 1968.Google Scholar
  21. 79.
    Y. B. Lopatinskiı̆. “On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations”. In: Ukrain. Mat. Ž. 5 (1953), pp. 123–151.Google Scholar
  22. 80.
    A. McNabb. “Strong comparison theorems for elliptic equations of second order.” English. In: J. Math. Mech. 10 (1961), pp. 431–440.Google Scholar
  23. 83.
    S. A. Nazarov and B. A. Plamenevsky. Elliptic problems in domains with piecewise smooth boundaries. English. Berlin: de Gruyter, 1994, pp. vii + 525.Google Scholar
  24. 84.
    S. Nikol’skij. Approximation of functions of several variables and imbed- ding theorems. (Priblizhenie funktsij mnogikh peremennykh i teoremy vlozheniya). 2nd ed., rev. and suppl. Russian. Moskva: “Nauka”. 455 p. R. 2.00 (1977). 1977.Google Scholar
  25. 85.
    W. Rudin. Functional analysis. 2nd ed. English. 2nd ed. New York, NY: McGraw-Hill, 1991, pp. xviii + 424.Google Scholar
  26. 86.
    H. H. Schaefer. Topological vector spaces. 4th corr. printing. English. Graduate Texts in Mathematics, 3. New York-Heidelberg-Berlin: Springer- Verlag. XI, 294 p. DM 48.00; $ 28.40 (1980). 1980.Google Scholar
  27. 88.
    B.-W. Schulze. “Boundary value problems and edge pseudo-differential operators.” English. In: Microlocal analysis and spectral theory. Proceedings of the NATO Advanced Study Institute, Il Ciocco, Castelvecchio Pascoli (Lucca), Italy, 23 September-3 October 1996. Dordrecht: Kluwer Academic Publishers, 1997, pp. 165–226.CrossRefGoogle Scholar
  28. 89.
    B.-W. Schulze. Boundary value problems and singular pseudo-differential operators. English. Chichester: John Wiley & Sons, 1998, pp. xvi + 637.Google Scholar
  29. 90.
    B.-W. Schulze. Pseudo-differential operators on manifolds with edges. English. Partial differential equations, Proc. Symp., Holzhau/GDR 1988, Teubner-Texte Math. 112, 259–288 (1989). 1989.Google Scholar
  30. 91.
    B. Schulze, M. Vishik, I. Witt, and S. Zelik. “The trajectory attractor for a nonlinear elliptic system in a cylindrical domain with piecewise smooth boundary”. In: Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 5.23 (1999), pp. 125–166.Google Scholar
  31. 93.
    J. Serrin. “A symmetry problem in potential theory.” English. In: Arch. Ration. Mech. Anal. 43 (1971), pp. 304–318.MathSciNetCrossRefGoogle Scholar
  32. 96.
    I. V. Skrypnik. Nonlinear elliptic boundary value problems. Transl. from the Russian by Jiri Jarnik. English. Teubner-Texte zur Mathematik, Bd. 91. Leipzig: BSB B. G. Teubner Verlagsgesellschaft. 232 p. M 24.00 (1986). 1986.Google Scholar
  33. 97.
    G. Sweers. Maximum principles, a start. 2000.Google Scholar
  34. 101.
    H. Triebel. Interpolation theory, function spaces, differential operators. 2nd rev. a. enl. ed. English. 2nd rev. a. enl. ed. Leipzig: Barth, 1995, p. 532.Google Scholar
  35. 104.
    A. Vol’pert and S. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. English. Mechanics: Analysis, 8. Dordrecht - Boston - Lancaster: Martinus Nijhoff Publishers, a member of the Kluwer Academic Publishers Group. XVIII, 678 p. Dfl. 340.00; $ 117.50; £86.50 (1985). 1985.Google Scholar
  36. 105.
    K. Yosida. Functional analysis. Repr. of the 6th ed. English. Repr. of the 6th ed. Berlin: Springer-Verlag, 1994, pp. xiv + 506.Google Scholar
  37. 106.
    E. Zeidler. Nonlinear functional analysis and its applications. Volume I: Fixed-point theorems. Translated from the German by Peter R. Wadsack. 2. corr. printing. English. 2. corr. printing. New York: Springer-Verlag, 1993, pp. xxiii + 909.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Messoud Efendiev
    • 1
  1. 1.Institute of Computational BiologyHelmholtz Center MunichNeuherbergGermany

Personalised recommendations