Nonlinear Nanoplasmonics

  • Alexey V. KrasavinEmail author
  • Pavel Ginzburg
  • Anatoly V. Zayats
Part of the Springer Series in Optical Sciences book series (SSOS, volume 217)


Recent developments in integrated optics and miniaturization of optical components and devices put forward new challenges for nonlinear optics at the (sub)wavelength scales. In order to address these challenges, plasmonic modes, related to a coupled state of photons and coherent free-carrier oscillations in conductors, their nanostructures, and plasmonic metamaterials, have recently been widely used to tailor spectral and dynamic properties of the nonlinear response. Providing strong local field enhancement, plasmonic modes boost nonlinear interactions, leading to high effective nonlinear susceptibilities and offering one of the fastest nonlinear response due to the free-carriers dynamics. In this chapter, we will overview principles and various effects in nonlinear plasmonics and plasmonic metamaterials. Engineered harmonic generation and soliton formation, related to coherent nonlinear interactions in free-electron gas are discussed and a hydrodynamic model for coherent nonlinearity is introduced. The Kerr-type nonlinearities for ultrafast optical signal processing are considered in terms of electron gas excitation and relaxation dynamics in the nanostructures. The flexibility and unique features of free-electron nonlinearities in plasmonic nanostructures are important for nonlinear plasmonic applications in free-space as well as integrated and quantum nanophotonic technologies.


  1. 1.
    R.W. Boyd, Nonlinear Optics (Academic Press, 2008)Google Scholar
  2. 2.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, 2002)Google Scholar
  3. 3.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Bozhevolnyi (ed.), Plasmonic Nanoguides and Cirquits (Pan Stanford Publishing Pte. Ltd., 2009)Google Scholar
  6. 6.
    A.V. Zayats, S. Maier (eds.), Active Plasmonics and Tuneable Plasmonic Metamaterials (Wiley, 2013)Google Scholar
  7. 7.
    W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009)Google Scholar
  8. 8.
    A.A. Maradudin, J.R. Sambles, W.L. Barnes (eds.), Modern Plasmonics (Elsevier, 2014)Google Scholar
  9. 9.
    J.A. Schuller, E.S. Barnard, W.S. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Boardman, A.V. Zayats, Nonlinear plasmonics, in Modern Plasmonics, ed. by A.A. Maradudin, J.R. Sambles, W.L. Barnes (Elsevier, 2014)Google Scholar
  12. 12.
    A.V. Krasavin, P. Ginzburg, A.V. Zayats, Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description. Laser Photon. Rev. 12, 1700082 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, 1988)Google Scholar
  14. 14.
    A.V. Krasavin, A.V. Zayats, Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv. Opt. Mater. 3, 1662–1690 (2015)CrossRefGoogle Scholar
  15. 15.
    S.M. Nie, S.R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)CrossRefGoogle Scholar
  16. 16.
    N.A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, S.I. Bozhevolnyi, A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    P. Ginzburg, A.V. Zayats, Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise. ACS Nano 7, 4334–4342 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Agio, A. Alu (eds.), Optical Antennas, (Cambridge University Press, 2013)Google Scholar
  19. 19.
    A.G. Malshukov, Surface-enhanced Raman scattering. The present status. Phys. Rep.-Rev. Sect. Phys. Lett. 194, 343–349 (1990)Google Scholar
  20. 20.
    J.D. Jackson, Classical Electrodynamics (Wiley, 1998)Google Scholar
  21. 21.
    C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Zayats, I.I. Smolyaninov, C.C. Davis, Observation of localized plasmonic excitations in thin metal films with near-field second-harmonic microscopy. Opt. Commun. 169, 93–96 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    F. Keilmann, R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. London Ser. A 362, 787–805 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    J. Butet, T.V. Raziman, K.Y. Yang, G.D. Bernasconi, O.J. Martin, Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response. Opt. Express 24, 17138–17148 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    G. Marino, P. Segovia, A.V. Krasavin, P. Ginzburg, N. Olivier, G.A. Wurtz, A.V. Zayats, Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab. Laser Photon. Rev. 12, 1700189 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    P. Ginzburg, A. Krasavin, Y. Sonnefraud, A. Murphy, R.J. Pollard, S.A. Maier, A.V. Zayats, Nonlinearly coupled localized plasmon resonances: resonant second-harmonic generation. Phys. Rev. B 86, 085422 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    N. Vasilantonakis, G.A. Wurtz, V.A. Podolskiy, A.V. Zayats, Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt. Express 23, 14329–14343 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M.G. Banaee, K.B. Crozier, Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy. ACS Nano 5, 307–314 (2011)CrossRefGoogle Scholar
  31. 31.
    P. Genevet, J.P. Tetienne, E. Gatzogiannis, R. Blanchard, M.A. Kats, M.O. Scully, F. Capasso, Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett. 10, 4880–4883 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Danckwerts, L. Novotny, Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Krasavin, T.P. Vo, W. Dickson, P.M. Bolger, A.V. Zayats, All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. Nano Lett. 11, 2231–2235 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A.V. Krasavin, S. Randhawa, J.S. Bouillard, J. Renger, R. Quidant, A.V. Zayats, Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Opt. Express 19, 25222–25229 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    A.V. Krasavin, A.V. Zayats, All-optical active components for dielectric-loaded plasmonic waveguides. Opt. Commun. 283, 1581–1584 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Krasavin, A.V. Zayats, Benchmarking system-level performance of passive and active plasmonic components: integrated circuit approach. Proc. IEEE 104, 2338–2348 (2016)CrossRefGoogle Scholar
  37. 37.
    K.F. MacDonald, Z.L. Samson, M.I. Stockman, N.I. Zheludev, Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    D. Pacifici, H.J. Lezec, H.A. Atwater, All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 1, 402–406 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    R.A. Pala, K.T. Shimizu, N.A. Melosh, M.L. Brongersma, A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    R. Adato, H. Altug, In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Krasavin, A.V. Zayats, Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys. Rev. Lett. 109, 053901 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    W.S. Cai, A.P. Vasudev, M.L. Brongersma, Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M.F. Kling, M.I. Stockman, S.-W. Kim, Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics 5, 677–681 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    G.A. Wurtz, R. Pollard, W. Hendren, G.P. Wiederrecht, D.J. Gosztola, V.A. Podolskiy, A.V. Zayats, Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 107–111 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A.D. Neira, N. Olivier, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V. Zayats, Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    A.D. Neira, G.A. Wurtz, P. Ginzburg, A.V. Zayats, Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. Opt. Express 22, 10987–10994 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    G. Sartorello, N. Olivier, J.J. Zhang, W.S. Yue, D.J. Gosztola, G.P. Wiederrecht, G. Wurtz, A.V. Zayats, Ultrafast optical modulation of second- and third-harmonic generation from cut-disk-based metasurfaces. ACS Photonics 3, 1517–1522 (2016)CrossRefGoogle Scholar
  48. 48.
    R.W. Boyd, Z. Shi, I. De Leon, The third-order nonlinear optical susceptibility of gold. Opt. Commun. 326, 74–79 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    O. Lysenko, M. Bache, N. Olivier, A.V. Zayats, A. Lavrinenko, Nonlinear dynamics of ultrashort long-range surface plasmon polariton pulses in gold strip waveguides. ACS Photonics 3, 2324–2329 (2016)CrossRefGoogle Scholar
  50. 50.
    J. Dryzek, A. Czapla, Quantum size effect in optical spectra of this metallic films. Phys. Rev. Lett. 58, 721–724 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    A.V. Zayats, O. Keller, K. Pedersen, A. Liu, F.A. Pudonin, Linear optical properties and second-harmonic generation from ultrathin niobium films: a search for quantization effects. IEEE J. Quantum Electron. 31, 2044–2051 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Optical second-harmonic generation in reflection from media with inversion symmetry. Phys. Rev. 174, 813–822 (1968)ADSCrossRefGoogle Scholar
  53. 53.
    M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, H. Schmidt, Optically induced damping of the surface plasmon resonance in gold colloids. Phys. Rev. Lett. 78, 2192–2195 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    N.N. Lepeshkin, A. Schweinsberg, G. Piredda, R.S. Bennink, R.W. Boyd, Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals. Phys. Rev. Lett. 93, 123902 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    G. Piredda, D.D. Smith, B. Wendling, R.W. Boyd, Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient. J. Opt. Soc. Am. B 25, 945–950 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    M. Kono, M.M. Škorić, Nonlinear Physics of Plasmas (Springer, Berlin, Heidelberg, 2010)zbMATHCrossRefGoogle Scholar
  57. 57.
    P. Ginzburg, A.V. Krasavin, G.A. Wurtz, A.V. Zayats, Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2, 8–13 (2015)CrossRefGoogle Scholar
  58. 58.
    A.V. Krasavin, P. Ginzburg, G.A. Wurtz, A.V. Zayats, Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun. 7, 11497 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    M. Scalora, M.A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, M.J. Bloemer, Second- and third-harmonic generation in metal-based structures. Phys. Rev. A 82, 043828 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    D.W. Snoke, Solid State Physics: Essential Concepts (Addison-Wesley, 2009)Google Scholar
  61. 61.
    J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Analysis of second-harmonic generation at metal surfaces. Phys. Rev. B 21, 4389–4402 (1980)ADSCrossRefGoogle Scholar
  62. 62.
    P. Ginzburg, A. Hayat, N. Berkovitch, M. Orenstein, Nonlocal ponderomotive nonlinearity in plasmonics. Opt. Lett. 35, 1551–1553 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    R. Sundararaman, P. Narang, A.S. Jermyn, W.A. Goddard III, H.A. Atwater, Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    T. Higuchi, M.I. Stockman, P. Hommelhoff, Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    N.W. Ashcroft, N. Mermin, Solid State Physics, (Brooks/Cole, 1976)Google Scholar
  67. 67.
    D.R. Nicholson, Introduction to Plasma Theory (Wiley, 1983)Google Scholar
  68. 68.
    L. Jiang, H.-L. Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer 127, 1167–1173 (2005)CrossRefGoogle Scholar
  69. 69.
    J. Bigot, J. Merle, O. Cregut, A. Daunois, Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett. 75, 4702–4705 (1995)ADSCrossRefGoogle Scholar
  70. 70.
    D. Pines, Elementary Excitations in Solids: Lectures on Protons, Electrons, and Plasmons (Perseus Books, 1999)Google Scholar
  71. 71.
    A. Marini, M. Conforti, G. Della Valle, H.W. Lee, T.X. Tran, W. Chang, M.A. Schmidt, S. Longhi, P.S.J. Russell, F. Biancalana, Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J. Phys. 15, 19, 013033 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    S. Peruch, A. Neira, G.A. Wurtz, B. Wells, V.A. Podolskiy, A.V. Zayats, Geometry defines ultrafast hot carrier dynamics and Kerr nonlinearity in plasmonic metamaterial waveguides and cavities. Adv. Opt. Mater. 5, 1700299 (2017)CrossRefGoogle Scholar
  73. 73.
    J. Butet, P.F. Brevet, O.J.F. Martin, Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015)CrossRefGoogle Scholar
  74. 74.
    J. Rudnick, E.A. Stern, Second-harmonic radiation from metal surfaces. Phys. Rev. B 4, 4274–4290 (1971)ADSCrossRefGoogle Scholar
  75. 75.
    D. Maystre, M. Neviere, R. Reinisch, Nonlinear polarisation inside metals: a mathematical study of the free-electron model. Appl. Phys. A 39, 115–121 (1986)ADSCrossRefGoogle Scholar
  76. 76.
    X.M. Hua, J.I. Gersten, Theory of second-harmonic generation by small metal spheres. Phys. Rev. B 33, 3756–3764 (1986)ADSCrossRefGoogle Scholar
  77. 77.
    D. Ostling, P. Stampfli, K.H. Bennemann, Theory of nonlinear optical properties of small metallic spheres. Z. Phys. D 28, 169–175 (1993)ADSCrossRefGoogle Scholar
  78. 78.
    P. Guyot-Sionnest, Y.R. Shen, Bulk contribution in surface second-harmonic generation. Phys. Rev. B 38, 7985–7989 (1988)ADSCrossRefGoogle Scholar
  79. 79.
    F.X. Wang, F.J. Rodríguez, W.M. Albers, R. Ahorinta, J.E. Sipe, M. Kauranen, Surface and bulk contributions to the second-order nonlinear optical response of a gold film. Phys. Rev. B 80, 233402 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, P.F. Brevet, Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions. Phys. Rev. B 82, 235403 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti, Engineering the second harmonic generation pattern from coupled gold nanowires. J. Opt. Soc. Am. B 27, 408–416 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    A. Benedetti, M. Centini, M. Bertolotti, C. Sibilia, Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt. Express 19, 26752–26767 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    C. Forestiere, A. Capretti, G. Miano, Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources. J. Opt. Soc. Am. B 30, 2355–2364 (2013)ADSCrossRefGoogle Scholar
  84. 84.
    A. Capretti, C. Forestiere, L. Dal Negro, G. Miano, Full-wave analytical solution of second-harmonic generation in metal nanospheres. Plasmonics 9, 151–166 (2013)CrossRefGoogle Scholar
  85. 85.
    J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83, 4045–4048 (1999)ADSCrossRefGoogle Scholar
  86. 86.
    J.I. Dadap, J. Shan, T.F. Heinz, Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J. Opt. Soc. Am. B 21, 1328–1347 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    Y. Pavlyukh, W. Hübner, Nonlinear Mie scattering from spherical particles. Phys. Rev. B 70, 245434 (2004)ADSCrossRefGoogle Scholar
  88. 88.
    J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Electric dipole origin of the second harmonic generation of small metallic particles. Phys. Rev. B 71, 165407 (2005)ADSCrossRefGoogle Scholar
  89. 89.
    I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, P.F. Brevet, Multipolar contributions of the second harmonic generation from silver and gold nanoparticles. J. Phys. Chem. C 111, 9044–9048 (2007)CrossRefGoogle Scholar
  90. 90.
    G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 25, 955–960 (2008)ADSCrossRefGoogle Scholar
  91. 91.
    A.V. Smolyaninov II, C.C. Zayats, Davis: near-field second harmonic generation from a rough metal surface. Phys. Rev. B 56, 9290–9293 (1997)ADSCrossRefGoogle Scholar
  92. 92.
    A.V. Zayats, T. Kalkbrenner, V. Sandoghdar, J. Mlynek, Second-harmonic generation from individual surface defects under local excitation. Phys. Rev. B 61, 4545–4548 (2000)ADSCrossRefGoogle Scholar
  93. 93.
    R. Kolkowski, J. Szeszko, B. Dwir, E. Kapon, J. Zyss, Non-centrosymmetric plasmonic crystals for second-harmonic generation with controlled anisotropy and enhancement. Laser Photon. Rev. 10, 287–298 (2016)ADSCrossRefGoogle Scholar
  94. 94.
    B.L. Wang, R. Wang, R.J. Liu, X.H. Lu, J. Zhao, Z.Y. Li, Origin of shape resonance in second-harmonic generation from metallic nanohole arrays. Sci. Rep. 3, 2358 (2013)CrossRefGoogle Scholar
  95. 95.
    K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang, Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 14, 379–383 (2015)ADSCrossRefGoogle Scholar
  96. 96.
    M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, M. Finazzi, Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    M.L. Ren, S.Y. Liu, B.L. Wang, B.Q. Chen, J. Li, Z.Y. Li, Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt. Express 22, 28653–28661 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    B.K. Canfield, H. Husu, J. Laukkanen, B.F. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    B. Wells, A.Y. Bykov, G. Marino, M.E. Nasir, A.V. Zayats, V.A. Podolskiy, Structural second-order nonlinearity in plasmonic metamaterials. Optica 5, 1502–1507 (2018)CrossRefGoogle Scholar
  100. 100.
    M.I. Shalaev, Z.A. Kudyshev, N.M. Litchinitser, Twisted light in a nonlinear mirror. Opt. Lett. 38, 4288–4291 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    K.A. O’Donnell, R. Torre, C.S. West, Observations of second-harmonic generation from randomly rough metal surfaces. Phys. Rev. B 55, 7985–7992 (1997)ADSCrossRefGoogle Scholar
  102. 102.
    M.I. Stockman, D.J. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys. Rev. Lett. 92, 057402 (2004)ADSCrossRefGoogle Scholar
  103. 103.
    T. Stefaniuk, N. Olivier, A. Belardini, C.P.T. McPolin, C. Sibilia, A.A. Wronkowska, A. Wronkowski, T. Szoplik, A.V. Zayats, Self-assembled silver-germanium nanolayer metamaterial with the enhanced nonlinear response. Adv. Opt. Mater. 5, 1700753 (2017)CrossRefGoogle Scholar
  104. 104.
    J.P. Dewitz, W. Hubner, K.H. Bennemann, Theory for nonlinear Mie-scattering from spherical metal clusters. Z. Phys. D 37, 75–84 (1996)ADSCrossRefGoogle Scholar
  105. 105.
    D. Carroll, X.H. Zheng, Spatial and angular distributions of third harmonic generation from metal surfaces. Eur. Phys. J. D 5, 135–144 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    Y. Yu, S.-S. Fan, H.-W. Dai, Z.-W. Ma, X. Wang, J.-B. Han, L. Li, Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids. Appl. Phys. Lett. 105, 061903 (2014)ADSCrossRefGoogle Scholar
  107. 107.
    B. Metzger, M. Hentschel, M. Nesterov, T. Schumacher, M. Lippitz, H. Giessen, Nonlinear optics of complex plasmonic structures: linear and third-order optical response of orthogonally coupled metallic nanoantennas. Appl. Phys. B 122, 77 (2016)ADSCrossRefGoogle Scholar
  108. 108.
    J.B. Lassiter, X. Chen, X. Liu, C. Ciracì, T.B. Hoang, S. Larouche, S.-H. Oh, M.H. Mikkelsen, D.R. Smith, Third-harmonic generation enhancement by film-coupled plasmonic stripe resonators. ACS Photonics 1, 1212–1217 (2014)CrossRefGoogle Scholar
  109. 109.
    K. Li, X. Li, D. Yuan Lei, S. Wu, Y. Zhan, Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires. Appl. Phys. Lett. 104, 261105 (2014)ADSCrossRefGoogle Scholar
  110. 110.
    M.S. Nezami, R. Gordon, Localized and propagating surface plasmon resonances in aperture-based third harmonic generation. Opt. Express 23, 32006–32014 (2015)ADSCrossRefGoogle Scholar
  111. 111.
    G. Hajisalem, D.K. Hore, R. Gordon, Interband transition enhanced third harmonic generation from nanoplasmonic gold. Opt. Mater. Express 5, 2217–2224 (2015)ADSCrossRefGoogle Scholar
  112. 112.
    T. Wu, P.P. Shum, Y. Sun, X. Shao, T. Huang, Study on the crucial conditions for efficient third harmonic generation using a metal-hybrid-metal plasmonic slot waveguide. Opt. Express 23, 253–263 (2015)ADSCrossRefGoogle Scholar
  113. 113.
    I.D. Mayergoyz, D.R. Fredkin, Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72, 155412 (2005)ADSCrossRefGoogle Scholar
  114. 114.
    J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, P.F. Brevet, Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys. Rev. Lett. 105, 077401 (2010)ADSCrossRefGoogle Scholar
  115. 115.
    D.V. Guzatov, V.V. Klimov, M.Y. Pikhota, Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation. Laser Phys. 20, 85–99 (2009)ADSCrossRefGoogle Scholar
  116. 116.
    S. Asano, G. Yamamoto, Light-scattering by a spheroidal particle. Appl. Opt. 14, 29–49 (1975)ADSCrossRefGoogle Scholar
  117. 117.
    P. Segovia, G. Marino, A.V. Krasavin, N. Olivier, G.A. Wurtz, P.A. Belov, P. Ginzburg, A.V. Zayats, Hyperbolic metamaterial antenna for second-harmonic generation tomography. Opt. Express 23, 30730–30738 (2015)ADSCrossRefGoogle Scholar
  118. 118.
    E.V. Makeev, S.E. Skipetrov, Second harmonic generation in suspensions of spherical particles. Opt. Commun. 224, 139–147 (2003)ADSCrossRefGoogle Scholar
  119. 119.
    J.I. Dadap, Optical second-harmonic scattering from cylindrical particles. Phys. Rev. B 78, 205322 (2008)ADSCrossRefGoogle Scholar
  120. 120.
    S. Varró, F. Ehlotzky, Higher-harmonic generation from a metal surface in a powerful laser field. Phys. Rev. A 49, 3106–3109 (1994)ADSCrossRefGoogle Scholar
  121. 121.
    G. Farkas, C. Tóth, S.D. Moustaizis, N.A. Papadogiannis, C. Fotakis, Observation of multiple-harmonic radiation induced from a gold surface by picosecond neodymium-doped yttrium aluminum garnet laser pulses. Phys. Rev. A 46, R3605–R3608 (1992)ADSCrossRefGoogle Scholar
  122. 122.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)Google Scholar
  123. 123.
    S. Raza, S.I. Bozhevolnyi, M. Wubs, N. Asger Mortensen, Nonlocal optical response in metallic nanostructures. J. Phys. Condens. Matter 27, 183204 (2015)ADSGoogle Scholar
  124. 124.
    G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N.A. Mortensen, M. Wubs, Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015)CrossRefGoogle Scholar
  125. 125.
    R.B. Davidson Ii, J.I. Ziegler, G. Vargas, S.M. Avanesyan, Y. Gong, W. Hess, R.F. Haglund Jr, Efficient forward second-harmonic generation from planar archimedean nanospirals. Nanophotonics 4, 108–113 (2015)Google Scholar
  126. 126.
    H.M. Gibbs: Optical Bistability: Controlling Light with Light (Academic Press, 1985)Google Scholar
  127. 127.
    C.K. Sun, F. Vallée, L. Acioli, E.P. Ippen, J.G. Fujimoto, Femtosecond investigation of electron thermalization in gold. Phys. Rev. B 48, 12365–12368 (1993)ADSCrossRefGoogle Scholar
  128. 128.
    N. Del Fatti, R. Bouffanais, F. Vallee, C. Flytzanis, Nonequilibrium electron interactions in metal films. Phys. Rev. Lett. 81, 922–925 (1998)ADSCrossRefGoogle Scholar
  129. 129.
    M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)ADSCrossRefGoogle Scholar
  130. 130.
    W. Dickson, G.A. Wurtz, P.R. Evans, R.J. Pollard, A.V. Zayats, Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 8, 281–286 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    R.A. Innes, J.R. Sambles, Optical non-linearity in liquid crystals using surface plasmon-polaritons. J. Phys. Condens. Matter 1, 6231–6260, 021 (1989)ADSGoogle Scholar
  132. 132.
    Optical Properties of Organic Molecules and Crystals (Academic Press, 1987)Google Scholar
  133. 133.
    S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)CrossRefGoogle Scholar
  134. 134.
    M. Pelton, J. Aizpurua, G. Bryant, Metal-nanoparticle plasmonics. Laser Photon. Rev. 2, 136–159 (2008)ADSCrossRefGoogle Scholar
  135. 135.
    H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, F. Vallee, Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011)ADSCrossRefGoogle Scholar
  136. 136.
    M. Halonen, A.A. Lipovskii, Y.P. Svirko, Femtosecond absorption dynamics in glass-metal nanpcomposites. Opt. Express 15, 6840–6845 (2007)ADSCrossRefGoogle Scholar
  137. 137.
    G. Ma, W. Sun, S.H. Tang, H. Zhang, Z. Shen, S. Qian, Size and-dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett. 27, 1043–1045 (2002)ADSCrossRefGoogle Scholar
  138. 138.
    W. Dickson, G.A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, A.V. Zayats, Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties. Phys. Rev. B 76, 115411 (2007)ADSCrossRefGoogle Scholar
  139. 139.
    M. Fu, K. Wang, H. Long, G. Yang, P. Lu, F. Hetsch, A.S. Susha, A.L. Rogach, Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot—metal nanoparticle structures. Appl. Phys. Lett. 100, 063117 (2012)ADSCrossRefGoogle Scholar
  140. 140.
    M. Abb, P. Albella, J. Aizpurua, O.L. Muskens, All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett. 11, 2457–2463 (2011)ADSCrossRefGoogle Scholar
  141. 141.
    I.S. Maksymov, A.E. Miroshnichenko, Y.S. Kivshar, Actively tunable bistable optical Yagi-Uda nanoantenna. Opt. Express 20, 8929–8938 (2012)ADSCrossRefGoogle Scholar
  142. 142.
    I.I. Smolyaninov, Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric. Phys. Rev. Lett. 94, 057403 (2005)ADSCrossRefGoogle Scholar
  143. 143.
    I. Smolyaninov, A.V. Zayats, A. Gungor, C.C. Davis, Single-photon tunneling via localized surface plasmons. Phys. Rev. Lett. 88, 187402 (2002)ADSCrossRefGoogle Scholar
  144. 144.
    I.I. Smolyaninov, C.C. Davis, A.V. Zayats, Light-controlled photon tunneling. Appl. Phys. Lett. 81, 3314–3316 (2002)ADSCrossRefGoogle Scholar
  145. 145.
    Y. Lin, X. Zhang, X. Fang, S. Liang, A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching. Nanoscale 8, 1421–1429 (2016)ADSCrossRefGoogle Scholar
  146. 146.
    G. Della Valle, D. Polli, P. Biagioni, C. Martella, M.C. Giordano, M. Finazzi, S. Longhi, L. Duò, G. Cerullo, F. Buatier de Mongeot, Self-organized plasmonic metasurfaces for all-optical modulation. Phys. Rev. B 91, 235440 (2015)Google Scholar
  147. 147.
    M. Pohl, V.I. Belotelov, I.A. Akimov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, A.K. Zvezdin, D.R. Yakovlev, M. Bayer, Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons. Phys. Rev. B 85, 081401(R) (2012)ADSCrossRefGoogle Scholar
  148. 148.
    X. Wang, R. Morea, J. Gonzalo, B. Palpant, Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett. 15, 2633–2639 (2015)ADSCrossRefGoogle Scholar
  149. 149.
    C.P.T. McPolin, N. Olivier, J.-S. Bouillard, D. O’Connor, A.V. Krasavin, W. Dickson, G.A. Wurtz, A.V. Zayats, Universal switching of plasmonic signals using optical resonator modes. Light Sci. Appl. 6, e16237 (2017)CrossRefGoogle Scholar
  150. 150.
    L.H. Nicholls, F.J. Rodriguez-Fortuno, M.E. Nasir, R.M. Cordova-Castro, N. Olivier, G.A. Wurtz, A.V. Zayats, Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics 11, 628–633 (2017)ADSCrossRefGoogle Scholar
  151. 151.
    N.E. Khokhlov, D.O. Ignatyeva, V.I. Belotelov, Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film. Opt. Express 22, 28019–28026 (2014)ADSCrossRefGoogle Scholar
  152. 152.
    A.V. Krasavin, N.I. Zheludev, Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004)ADSCrossRefGoogle Scholar
  153. 153.
    A.V. Krasavin, K.F. MacDonald, N.I. Zheludev, A.V. Zayats, High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl. Phys. Lett. 85, 3369–3371 (2004)ADSCrossRefGoogle Scholar
  154. 154.
    A.V. Krasavin, A.V. Zayats, N.I. Zheludev, Active control of surface plasmon–polariton waves. J. Opt. A Pure Appl. Opt. 7, S85–S89 (2005)ADSCrossRefGoogle Scholar
  155. 155.
    N. Rotenberg, M. Betz, H.M. van Driel, Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett. 105, 017402 (2010)ADSCrossRefGoogle Scholar
  156. 156.
    A.V. Krasavin, A.V. Zayats, Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys. Rev. B 78, 045425 (2008)ADSCrossRefGoogle Scholar
  157. 157.
    S. Randhawa, A.V. Krasavin, T. Holmgaard, J. Renger, S.I. Bozhevolnyi, A.V. Zayats, R. Quidant, Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths. Appl. Phys. Lett. 98, 161102 (2011)ADSCrossRefGoogle Scholar
  158. 158.
    G.A. Wurtz, A.V. Zayats, Nonlinear surface plasmon polaritonic crystals. Laser Photonics Rev. 2, 125–135 (2008)ADSCrossRefGoogle Scholar
  159. 159.
    V. Mikhailov, G.A. Wurtz, J. Elliott, P. Bayvel, A.V. Zayats, Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. Lett. 99, 083901 (2007)ADSCrossRefGoogle Scholar
  160. 160.
    A. Minovich, J. Farnell, D.N. Neshev, I. McKerracher, F. Karouta, J. Tian, D.A. Powell, I.V. Shadrivov, H. Hoe Tan, C. Jagadish, Y.S. Kivshar, Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012)ADSCrossRefGoogle Scholar
  161. 161.
    I.I. Smolyaninov, A.V. Zayats, A. Stanishevsky, C.C. Davis, Optical control of photon tunneling through an array of nanometer-scale cylindrical channels. Phys. Rev. B 66, 205414 (2002)ADSCrossRefGoogle Scholar
  162. 162.
    G.A. Wurtz, R. Pollard, A.V. Zayats, Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys. Rev. Lett. 97, 057402 (2006)ADSCrossRefGoogle Scholar
  163. 163.
    N. Rotenberg, M. Betz, H.M. Van Driel, Ultrafast control of grating-assisted light coupling to surface plasmons. Opt. Lett. 33, 2137–2139 (2008)ADSCrossRefGoogle Scholar
  164. 164.
    K.T. Tsai, G.A. Wurtz, J.Y. Chu, T.Y. Cheng, H.H. Wang, A.V. Krasavin, J.H. He, B.M. Wells, V.A. Podolskiy, J.K. Wang, Y.L. Wang, A.V. Zayats, Looking into meta-atoms of plasmonic nanowire metamaterial. Nano Lett. 14, 4971–4976 (2014)ADSCrossRefGoogle Scholar
  165. 165.
    P. Ginzburg, D.J. Roth, M.E. Nasir, P. Segovia, A.V. Krasavin, J. Levitt, L.M. Hirvonen, B. Wells, K. Suhling, D. Richards, V.A. Podolskiy, A.V. Zayats, Spontaneous emission in non-local materials. Light Sci. Appl. 6, e16273 (2017)CrossRefGoogle Scholar
  166. 166.
    R.J. Pollard, A. Murphy, W.R. Hendren, P.R. Evans, R. Atkinson, G.A. Wurtz, A.V. Zayats, V.A. Podolskiy, Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009)ADSCrossRefGoogle Scholar
  167. 167.
    B.M. Wells, A.V. Zayats, V.A. Podolskiy, Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B 89, 10, 035111 (2014)Google Scholar
  168. 168.
    V.A. Podolskiy, P. Ginzburg, B. Wells, A.V. Zayats, Light emission in nonlocal plasmonic metamaterials. Faraday Discuss. 178, 61–70 (2015)ADSCrossRefGoogle Scholar
  169. 169.
    A.E. Nikolaenko, F. De Angelis, S.A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, N.I. Zheludev, Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 4, 153902 (2010)Google Scholar
  170. 170.
    M. Ren, B. Jia, J.Y. Ou, E. Plum, J. Zhang, K.F. MacDonald, A.E. Nikolaenko, J. Xu, M. Gu, N.I. Zheludev, Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011)CrossRefGoogle Scholar
  171. 171.
    G.A. Wurtz, P.R. Evans, W. Hendren, R. Atkinson, W. Dickson, R.J. Pollard, A.V. Zayats, W. Harrison, C. Bower, Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 7, 1297–1303 (2007)ADSCrossRefGoogle Scholar
  172. 172.
    N. Vasilantonakis, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V. Zayats, Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photon. Rev. 9, 345–353 (2015)ADSCrossRefGoogle Scholar
  173. 173.
    M.Z. Alam, I. De Leon, R.W. Boyd, Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016)ADSCrossRefGoogle Scholar
  174. 174.
    D. Mihalache, M. Bertolotti, C. Sibilia, Nonlinear wave propagation in planar structures, ed. by E. Wolf in Progress in Optics vol 27 (Elsevier, 1989)Google Scholar
  175. 175.
    P. Ginzburg, E. Hirshberg, M. Orenstein, Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments. J. Opt. A Pure Appl. Opt. 11, 114024 (2009)ADSCrossRefGoogle Scholar
  176. 176.
    D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)ADSCrossRefGoogle Scholar
  177. 177.
    P. Ginzburg, D. Arbel, M. Orenstein, Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006)ADSCrossRefGoogle Scholar
  178. 178.
    P. Ginzburg, M. Orenstein, Plasmonic transmission lines: from micro to nano scale with lambda/4 impedance matching. Opt. Express 15, 6762–6767 (2007)ADSCrossRefGoogle Scholar
  179. 179.
    I.D. Rukhlenko, A. Pannipitiya, M. Premaratne, G.P. Agrawal, Exact dispersion relation for nonlinear plasmonic waveguides. Phys. Rev. B 84, 113409 (2011)ADSCrossRefGoogle Scholar
  180. 180.
    P. Ginzburg, M. Orenstein, Nonlinear effects in plasmonic systems, in Active Plasmonics and Tuneable Plasmonic Metamaterials, ed. by A.V. Zayats, S.A. Maier (Wiley, 2013)Google Scholar
  181. 181.
    E. Feigenbaum, M. Orenstein, Plasmon-soliton. Opt. Lett. 32, 674–676 (2007)ADSCrossRefGoogle Scholar
  182. 182.
    E. Feigenbaum, M. Orenstein, Modeling of complementary (void) plasmon waveguiding. J. Lightwave Technol. 25, 2547–2562 (2007)ADSCrossRefGoogle Scholar
  183. 183.
    A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Self-focusing and spatial plasmon-polariton solitons. Opt. Express 17, 21732–21737 (2009)ADSCrossRefGoogle Scholar
  184. 184.
    A.R. Davoyan, I.V. Shadrivov, A.A. Zharov, D.K. Gramotnev, Y.S. Kivshar, Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett. 105, 116804 (2010)ADSCrossRefGoogle Scholar
  185. 185.
    A. Marini, D.V. Skryabin, B. Malomed, Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss. Opt. Express 19, 6616–6622 (2011)ADSCrossRefGoogle Scholar
  186. 186.
    Y. Liu, G. Bartal, D.A. Genov, X. Zhang, Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 99, 153901 (2007)ADSCrossRefGoogle Scholar
  187. 187.
    Y.N. Karamzin, A.P. Sukhorukov, Mutual focusing of high-power light beams in media with quadratic nonlinearity. Sov. Phys. JETP 41, 414–420 (1976)Google Scholar
  188. 188.
    W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. VanStryland, G.I. Stegeman, L. Torner, C.R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett. 74, 5036–5039 (1995)ADSCrossRefGoogle Scholar
  189. 189.
    R. Schiek, Y. Baek, G.I. Stegeman, One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides. Phys. Rev. E 53, 1138–1141 (1996)ADSCrossRefGoogle Scholar
  190. 190.
    L. Torner, A. Barthelemy, Quadratic solitons: recent developments. IEEE J. Quantum Electron. 39, 22–30 (2003)ADSCrossRefGoogle Scholar
  191. 191.
    P. Ginzburg, A.V. Krasavin, A.V. Zayats, Cascaded second-order surface plasmon solitons due to intrinsic metal nonlinearity. New J. Phys. 15, 013031 (2013)ADSCrossRefGoogle Scholar
  192. 192.
    A.V. Krasavin, K.F. MacDonald, A.S. Schwanecke, N.I. Zheludev, Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics. Appl. Phys. Lett. 89, 031118 (2006)ADSCrossRefGoogle Scholar
  193. 193.
    T.V. Murzina, T.V. Misuryaev, A.F. Kravets, J. Gudde, D. Schuhmacher, G. Marowsky, A.A. Nikulin, O.A. Aktsipetrov, Nonlinear magneto-optical Kerr effect and plasmon-assisted SHG in magnetic nanomaterials exhibiting giant magnetoresistance. Surf. Sci. 482, 1101–1106 (2001)ADSCrossRefGoogle Scholar
  194. 194.
    I. Razdolski, D. Makarov, O.G. Schmidt, A. Kirilyuk, T. Rasing, V.V. Temnov, Nonlinear surface magnetoplasmonics in Kretschmann multilayers. ACS Photonics 3, 179–183 (2016)CrossRefGoogle Scholar
  195. 195.
    T. Jostmeier, M. Mangold, J. Zimmer, H. Karl, H.J. Krenner, C. Ruppert, M. Betz, Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites. Opt. Express 24, 17321–17331 (2016)ADSCrossRefGoogle Scholar
  196. 196.
    V.L. Krutyanskiy, I.A. Kolmychek, E.A. Gan’shina, T.V. Murzina, P. Evans, R. Pollard, A.A. Stashkevich, G.A. Wurtz, A.V. Zayats, Plasmonic enhancement of nonlinear magneto-optical response in nickel nanorod metamaterials. Phys. Rev. B 87, 035116 (2013)ADSCrossRefGoogle Scholar
  197. 197.
    V.K. Valev, A.V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C.G. Biris, N.C. Panoiu, B. De Clercq, M. Ameloot, O.A. Aktsipetrov, V.V. Moshchalkov, T. Verbiest, Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5, 91–96 (2011)CrossRefGoogle Scholar
  198. 198.
    V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J.N. Chen, J. Nogues, P. Vavassori, R. Hillenbrand, J. Akerman, A. Dmitriev, Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett. 11, 5333–5338 (2011)ADSCrossRefGoogle Scholar
  199. 199.
    A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331, 290–291 (2011)ADSCrossRefGoogle Scholar
  200. 200.
    H. Zhang, S. Virally, Q.L. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37, 1856–1858 (2012)ADSCrossRefGoogle Scholar
  201. 201.
    J.D. Cox, I. Silveiro, F.J.G. de Abajo, Quantum effects in the nonlinear response of graphene plasmons. ACS Nano 10, 1995–2003 (2016)CrossRefGoogle Scholar
  202. 202.
    R.I. Woodward, R.T. Murray, C.F. Phelan, R.E.P. de Oliveira, T.H. Runcorn, E.J.R. Kelleher, S. Li, E.C. de Oliveira, G.J.M. Fechine, G. Eda, C.J.S. de Matos, Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2016)CrossRefGoogle Scholar
  203. 203.
    M. Rahmani, G. Leo, I. Brener, A.V. Zayats, S. Maier, C. De Angelis, H. Tan, V.F. Gili, F. Karouta, R. Oulton, K. Vora, M. Lysevych, I. Staude, L. Xu, A. Miroshnichenko, C. Jagadish, D. Neshev, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey V. Krasavin
    • 1
    Email author
  • Pavel Ginzburg
    • 2
  • Anatoly V. Zayats
    • 1
  1. 1.Department of Physics and London Centre for NanotechnologyKing’s College LondonStrand, LondonUK
  2. 2.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations