Controlling Light with Light via Interference on Photonic Metamaterials

  • Xu Fang
  • Kevin F. MacDonaldEmail author
  • Nikolay I. Zheludev
Part of the Springer Series in Optical Sciences book series (SSOS, volume 217)


It has been discovered in recent years that interactions between coherent light waves and thin-film media can, if the film is much thinner than the wavelength, lead to controllable energy exchange between incident and scattered waves and thereby to a plethora of new technological opportunities. Planar photonic metamaterials—ultrathin media with nano-engineered optical properties—can realize the full potential of this concept to change optical data processing paradigms, spectroscopy and nonlinear optics. We describe how coherent interactions in metamaterials can facilitate nonlinear light-by-light control functions with THz bandwidth at arbitrarily low intensities.


  1. 1.
    M. Shapiro, P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley Inc., Hoboken, New Jersey, USA, 2003)zbMATHGoogle Scholar
  2. 2.
    D.E. Reiter, E.Y. Sherman, A. Najmaie et al., Coherent control of electron propagation and capture in semiconductor heterostructures. Europhys. Lett. 88, 67005 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    A. Assion, T. Baumert, M. Bergt et al., Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    M.I. Stockman, S.V. Faleev, D.J. Bergman, Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 067402 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    T.S. Kao, S.D. Jenkins, J. Ruostekoski et al., Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots. Phys. Rev. Lett. 106, 085501 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    D. Brinks, M. Castro-Lopez, R. Hildner et al., Plasmonic antennas as design elements for coherent ultrafast nanophotonics. Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    B. Gjonaj, J. Aulbach, P.M. Johnson et al., Active spatial control of plasmonic fields. Nat. Photon. 5, 360–363 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M. Miyata, J. Takahara, Excitation control of long-range surface plasmons by two incident beams. Opt. Express 20, 9493–9500 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S.B. Choi, D.J. Park, Y.K. Jeong et al., Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator. Appl. Phys. Lett. 94, 063115 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Li, S. Zhang, N.J. Halas et al., Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small 7, 593–596 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, K.F. MacDonald, N.I. Zheludev, Controlling light-with-light without nonlinearity. Light. Sci. Appl. 1, e18 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    X. Fang, M.L. Tseng, J.Y. Ou et al., Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104, 141102 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Karvounis, V. Nalla, K. F. MacDonald, N. I. Zheludev, Ultrafast coherent absorption in diamond metamaterials. Adv. Mater. 30, 1707354 (2018)CrossRefGoogle Scholar
  14. 14.
    T. Roger, S. Vezzoli, E. Bolduc et al., Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Shi, X. Fang, E.T.F. Rogers et al., Coherent control of Snell’s law at metasurfaces. Opt. Express 22, 21051–21060 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Mousavi, E. Plum, J. Shi et al., Coherent control of birefringence and optical activity. Appl. Phys. Lett. 105, 011906 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Rao, A. Lyons, T. Roger et al., Geometries for the coherent control of four-wave mixing in graphene multilayers. Sci. Rep. 5, 15399 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Papaioannou, E. Plum, E. T. F. Rogers, N. I. Zheludev, All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light Sci. Appl. 7, 17157 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    M. Papaioannou, E. Plum, J. Valente, et al., Two-dimensional control of light with light on metasurfaces. Light Sci. Appl. 5, e16070 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M. Papaioannou, E. Plum, N. I. Zheludev, All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photon 4, 217–222 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Fang, M.L. Tseng, D.P. Tsai et al., Coherent excitation-selective spectroscopy of multipole resonances. Phys. Rev. Appl. 5, 014010 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    X. Fang, K. F. MacDonald, E. Plum, N. I. Zheludev, Coherent control of light-matter interactions in polarization standing waves. Sci. Rep. 6, 31141 (2016)Google Scholar
  23. 23.
    M.L. Tseng, X. Fang, V. Savinov, et al., Coherent selection of invisible high-order electromagnetic excitations. Sci. Rep. 7, 44488 (2017)Google Scholar
  24. 24.
    D.A.B. Miller, Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Richardson, Filling the light pipe. Science 330, 327–238 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    S.J. Vavilov, W.L. Lewschin, Z. Phys. 35, 920–926 (1926)ADSCrossRefGoogle Scholar
  27. 27.
    D.A.B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)CrossRefGoogle Scholar
  28. 28.
    W.F. Sharfin, M. Dagenais, Femtojoule optical switching in nonlinear semiconductor laser amplifiers. Appl. Phys. Lett. 48, 321–322 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    M. Sánchez, P. Wen, M. Gross et al., Nonlinear gain in vertical-cavity semiconductor optical amplifiers. IEEE Photon. Tech. Lett. 15, 507–509 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    K. Nozaki, T. Tanabe, A. Shinya et al., Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    N.I. Zheludev, Y.S. Kivshar, From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    R.F. Waters, P.A. Hobson, K.F. MacDonald et al., Optically switchable photonic metasurfaces. Appl. Phys. Lett. 107, 081102 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    A. Karvounis, J. Ou, W. Wu et al., Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    J. Ou, E. Plum, J. Zhang et al., Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater. 28, 729–733 (2016)CrossRefGoogle Scholar
  35. 35.
    D.M. Pozar, Microwave Engineering (Wiley Inc., 1998)Google Scholar
  36. 36.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)zbMATHGoogle Scholar
  37. 37.
    C. Hägglund, S.P. Apell, B. Kasemo, Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics. Nano Lett. 10, 3135–3141 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S. Thongrattanasiri, F.H.L. Koppens, F.J. García de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    W. Wan, Y. Chong, L. Ge et al., Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    S. Dutta-Gupta, O.J.F. Martin, S. Dutta Gupta, et al., Controllable coherent perfect absorption in a composite film. Opt. Express 20, 1330–1336 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    M. Pu, Q. Feng, M. Wang et al., Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    E. Plum, K. Tanaka, W.T. Chen et al., A combinatorial approach to metamaterials discovery. J. Opt. 13, 055102 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Potton, Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    W. Cai, U.K. Chettiar, H.K. Yuan et al., Metamagnetics with rainbow colors. Opt. Express 15, 3333–3341 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    N. Liu, L. Fu, S. Kaiser et al., Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008)CrossRefGoogle Scholar
  46. 46.
    N. Noginova, Y. Barnakov, H. Li et al., Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film. Opt. Express 17, 10767–10772 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    T.H. Taminiau, S. Karaveli, N.F. van Hulst, et al., Quantifying the magnetic nature of light emission. Nat. Commun. 3 (2012)Google Scholar
  48. 48.
    V.S. Asadchy, I.A. Faniayeu, Y. Ra’di, et al., Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys. Rev. X 5, 031005 (2015)Google Scholar
  49. 49.
    X. Fang, K.F. MacDonald, N.I. Zheludev, Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    A. Xomalis, I. Demirtzioglou, E. Plum, et al., Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, 182 (2018)Google Scholar
  51. 51.
    J.Y. Ou, E. Plum, J. Zhang et al., An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotech. 8, 252–255 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    J. Valente, J.Y. Ou, E. Plum et al., Reconfiguring photonic metamaterials with currents and magnetic fields. Appl. Phys. Lett. 106, 111905 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    B. Gholipour, J. Zhang, K.F. MacDonald et al., All-optical, non-volatile, bi-directional phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013)CrossRefGoogle Scholar
  54. 54.
    T. Driscoll, H.-T. Kim, B.-G. Chae et al., Memory metamaterials. Science 325, 1518–1521 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    M.J. Dicken, K. Aydin, I.M. Pryce et al., Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 17, 18330–18339 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    B. Kang, J.H. Woo, E. Choi et al., Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. Opt. Express 18, 16492–16498 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    O. Buchnev, J.Y. Ou, M. Kaczmarek et al., Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt. Express 21, 1633–1638 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    K.M. Dani, Z. Ku, P.C. Upadhya et al., Subpicosecond optical switching with a negative index metamaterial. Nano Lett. 9, 3565–3569 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    D.J. Cho, W. Wu, E. Ponizovskaya et al., Ultrafast modulation of optical metamaterials. Opt. Express 17, 17652–17657 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    Y.C. Jun, E. Gonzales, J.L. Reno et al., Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903–1911 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    J. Hardy, J. Shamir, Optics inspired logic architecture. Opt. Express 15, 150–165 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    K. Wu, C. Soci, P.P. Shum et al., Computing matrix inversion with optical networks. Opt. Express 22, 295–304 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    C. Altuzarra, S. Vezzoli, J. Valente, et al., Coherent perfect absorption in metamaterials with entangled photons. ACS Photon. 4, 2124–2128 (2017)CrossRefGoogle Scholar
  64. 64.
    K. Wu, F.J. García de Abajo, C. Soci et al., An optical fiber network oracle for NP-complete problems. Light Sci. Appl. 3, e147 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xu Fang
    • 1
  • Kevin F. MacDonald
    • 1
    Email author
  • Nikolay I. Zheludev
    • 1
    • 2
  1. 1.Optoelectronics Research Centre & Centre for Photonic MetamaterialsUniversity of SouthamptonHighfield, SouthamptonUK
  2. 2.Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences & The Photonics InstituteNanyang Technological UniversitySingaporeSingapore

Personalised recommendations