Advertisement

Nanophotonic Advances for Room-Temperature Single-Photon Sources

  • Svetlana G. LukishovaEmail author
  • Luke J. BissellEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 217)

Abstract

This review reports on recent advances in room-temperature single-photon sources (SPSs) with photons exhibiting antibunching (separation of all photons in time in contrast to faint laser sources), including the authors’ results on SPSs with definite circular and linear polarizations. SPSs are important devices in secure quantum communication. Some quantum computing schemes are also based on such sources. Quantum metrology, quantum memory and fundamental physics experiments are other applications of SPSs. The critical issue in producing “antibunched” photons is the very low concentration of photon emitters, such that, within an excitation-laser focal spot, only one emitter becomes excited and which will emit only one photon at a time. Single “giant” colloidal semiconductor nanocrystal quantum dots and dot-in-rods, diamond color centers (both bulk and nanodiamonds), and trivalent rare-earth ions (TR3+) have the best photostability (longest operating time) in room-temperature excitation. This review is focused on nanophotonic aspects of the problem, describing room-temperature SPSs based on these emitters and some new stable single-emitters. We also describe methods for emitter fluorescence enhancement: microcavities (including photonic bandgap, Bragg reflector and chiral liquid crystal microcavities), plasmonic nanoantennas, and metamaterials. Finally, we describe the alignment of anisotropic single emitters with liquid crystals.

Notes

Acknowledgements

S. G. L. acknowledges support from the US National Science Foundation grants EEC 1343673 and ECC 0420888. L. J. B. was supported by the Office of the Secretary of Defense ARAP QSEP program; and AFOSR, “Single Color Center Engineering”. We also thank the following publishers for permission to reproduce their materials: Nature Publishing Group, Taylor & Francis Group, American Chemical Society, American Physical Society, Optical Society OSA, Elsevier, John Wiley and Sons, Institute of Physics, American Institute of Physics, and Turpion.

References

  1. 1.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)Google Scholar
  4. 4.
    D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451–454 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    H. Paul, Photon antibunching. Rev. Mod. Phys. 54, 1061–1102 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, Bangalore, India, 1984), p. 175Google Scholar
  7. 7.
    N. Lütkenhaus, Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 52304 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    W.-Y. Hwang, Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 57901 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    H.-K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, N. Gisin, Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76, 50301 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    H.-J. Briegel, S.J. van Enk, J.I. Cirac, P. Zoller, D. Bouwmeeester, J.-W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger, V. Vedral, M.B. Plenio, P.L. Knight, Quantum networks and multi-particle entanglement, in The Physics of Quantum Information, ed. by D.D. Bouwmeester, P.A. Ekert, P.A. Zeilinger (Springer, Berlin Heidelberg, 2000), pp. 191–220CrossRefGoogle Scholar
  13. 13.
    L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photonics 3, 706–714 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    C. Simon, M. Afzelius, J. Appel, A.B. de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kroll, J.H. Muller, J. Nunn, E. Polzik, J. Rarity, H. de Riedmatten, W. Rosenfeld, A.J. Shields, N. Skold, R.M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Quantum memories. A review based on the European Integrated Project “Qubit Applications (QAP)”. Eur. Phys. J. D. 58, 1–22 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J.M. Raimond, S. Haroche, Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 62311 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A. Shields, Quantum logic with light, glass, and mirrors. Science 297, 1821–1822 (2002)CrossRefGoogle Scholar
  23. 23.
    G. Brida, M. Genovese, M. Gramegna, Twin-photon techniques for photo-detector calibration. Laser Phys. Lett. 3, 115–123 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Felle, J. Huwer, R.M. Stevenson, J. Skiba-Szymanska, M.B. Ward, I. Farrer, R.V. Penty, D.A. Ritchie, A.J. Shields, Interference with a quantum dot single-photon source and a laser at telecom wavelength. Appl. Phys. Lett. 107, 131106 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    D. Fattal, K. Inoue, J. VuCkovic, C. Santori, G.S. Solomon, Y. Yamamoto, Entanglement formation and violation of Bell’s Inequality with a semiconductor single photon source. Phys. Rev. Lett. 92, 37903 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    M.J. Stevens, Photon statistics, measurements, and measurements tools, in Single-Photon Generation and Detection: Physics and Applications, ed. by A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang (Academic Press, 2013), pp. 25–68Google Scholar
  28. 28.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R.H. Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)ADSCrossRefGoogle Scholar
  30. 30.
    R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    M. Ehrenberg, R. Rigler, Rotational Brownian motion and fluorescence intensify fluctuations. Chem. Phys. 4, 390–401 (1974)CrossRefGoogle Scholar
  32. 32.
    H.J. Carmichael, D.F. Walls, A quantum-mechanical master equation treatment of the dynamical Stark effect. J. Phys. B: At. Mol. Phys. 9, 1199 (1976)ADSCrossRefGoogle Scholar
  33. 33.
    H.J. Kimble, L. Mandel, Theory of resonance fluorescence. Phys. Rev. A 13, 2123–2144 (1976)ADSCrossRefGoogle Scholar
  34. 34.
    C. Cohen-Tannoudji, Atoms in strong resonance fields, in Frontiers in Laser Spectroscopy, Les Houches Summer School Proceedings, Session XXVII, July 1975, ed. by R. Balian, S. Haroche, S. Liberman (North-Holland, Amsterdam, 1977), pp. 1–104Google Scholar
  35. 35.
    H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    H.J. Kimble, M. Dagenais, L. Mandel, Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence. Phys. Rev. A 18, 201–207 (1978)ADSCrossRefGoogle Scholar
  37. 37.
    M. Dagenais, L. Mandel, Investigation of two-time correlations in photon emissions from a single atom. Phys. Rev. A 18, 2217–2228 (1978)ADSCrossRefGoogle Scholar
  38. 38.
    J.D. Cresser, J. Häger, G. Leuchs, M. Rateike, H. Walther, Resonance fluorescence of atoms in strong monochromatic laser fields, in Dissipative Systems in Quantum Optics, ed. by P.R. Bonifacio (Springer, Berlin, Heidelberg, 1982), pp. 21–59CrossRefGoogle Scholar
  39. 39.
    P. Kask, P. Piksarv, Ü. Mets, Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur. Biophys. J. 12, 163–166 (1985)CrossRefGoogle Scholar
  40. 40.
    Ü. Mets, Antibunching and rotational diffusion in FCS, in Fluorescence Correlation Spectroscopy, Theory and Applications, vol. 65, Chemical Physics, ed. by R. Rigler, E.S. Elson (Springer, Berlin, Heidelberg, 2001), pp. 346–359CrossRefGoogle Scholar
  41. 41.
    J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland, Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)ADSCrossRefGoogle Scholar
  42. 42.
    F. Diedrich, H. Walther, Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    W.E. Moerner, L. Kador, Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    M. Orrit, J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    T. Basché, W.E. Moerner, M. Orrit, H. Talon, Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    F. De Martini, G. Di Giuseppe, M. Marrocco, Single-Mode Generation of quantum photon states by excited single molecules in a microcavity trap. Phys. Rev. Lett. 76, 900–903 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    W. Patrick Ambrose, P.M. Goodwin, J. Enderlein, D.J. Semin, J.C. Martin, R.A. Keller, Fluorescence photon antibunching from single molecules on a surface. Chem. Phys. Lett. 269, 365–370 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    S.C. Kitson, P. Jonsson, J.G. Rarity, P.R. Tapster, Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. A 58, 620 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999)ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    L. Fleury, J.M. Segura, G. Zumofen, B. Hecht, U.P. Wild, Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    F. Treussart, A. Clouqueur, C. Grossman, J.-F. Roch, Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film. Opt. Lett. 26, 1504–1506 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    F. Vargas, O. Hollricher, O. Marti, G. de Schaetzen, G. Tarrach, Influence of protective layers on the blinking of fluorescent single molecules observed by confocal microscopy and scanning near field optical microscopy. J. Chem. Phys. 117, 866–871 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    L.A. Deschenes, D.A.V. Bout, Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 255–258 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    S.G. Lukishova, A.W. Schmid, A.J. McNamara, R.W. Boyd, C.R. Stroud, Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host. IEEE J Sel. Top. Quant Electron. 9, 1512–1518 (2003)Google Scholar
  57. 57.
    C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, P. Grangier, Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 61802 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    P. Michler, A. Imamoğlu, M.D. Mason, P.J. Carson, G.F. Strouse, S.K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    B. Lounis, H.A. Bechtel, D. Gerion, P. Alivisatos, W.E. Moerner, Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett. 329, 399–404 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    G. Messin, J.P. Hermier, E. Giacobino, P. Desbiolles, M. Dahan, Bunching and antibunching in the fluorescence of semiconductor nanocrystals. Opt. Lett. 26, 1891–1893 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    J. Kim, O. Benson, H. Kan, Y. Yamamoto, A single-photon turnstile device. Nature 397, 500–503 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    E. Moreau, I. Robert, J.M. Gerard, I. Abram, L. Manin, V. Thierry-Mieg, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)ADSCrossRefGoogle Scholar
  68. 68.
    Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Electrically driven single-photon source. Science 295, 102–105 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 71101 (2011)CrossRefGoogle Scholar
  70. 70.
    Y. Yamamoto, C. Santori, G. Solomon, J. Vuckovic, D. Fattal, E. Waks, E. Diamanti, Single photons for quantum information systems. Prog. Inform. 5 (2005)Google Scholar
  71. 71.
    P. Yao, V.S.C. Manga Rao, S. Hughes, On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photonics Rev. 4, 499–516 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    S. Hughes: Single-photon sources: dream and reality, in Single-Photon Generation and Detection: Physics and Applications, A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang (Academic Press, 2013)Google Scholar
  73. 73.
    B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    K.O. Greulich, E. Thiel, Single photon light sources. Single Mol. 2, 5–12 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    M. Oxborrow, A.G. Sinclair, Single-photon sources. Contemp. Phys. 46, 173–206 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    A. Kuhn, D. Ljunggren, Cavity-based single-photon sources. Contemp. Phys. 51, 289–313 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    S. Scheel, Single-photon sources—an introduction. J. Mod. Opt. 56, 141 (2009)ADSzbMATHCrossRefGoogle Scholar
  78. 78.
    M. De Vittorio, F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, A. Bramati, R. Cingolani, Recent advances on single photon sources based on single colloidal nanocrystals. Opto-Electron. Rev. 18, 1–9 (2010)CrossRefGoogle Scholar
  79. 79.
    L.J. Bissell, Experimental realization of efficient, room temperature single-photon sources with definite circular and linear polarizations. Ph.D. thesis, University of Rochester, Rochester, NY (2011)Google Scholar
  80. 80.
    S.G. Lukishova, Single photon sources for secure quantum communication, in Proceedings SPIE 9065, paper 90650C (2013)Google Scholar
  81. 81.
    K.S. Grußmayer, D.-P. Herten, Photon antibunching in single molecule fluorescence spectroscopy, in Advanced Photon Counting. Springer Series on Fluorescence, ed. by P. Kapusta, M. Wahl, R. Erdmann, vol. 15 (Springer International Publishing, 2014), pp. 159–190Google Scholar
  82. 82.
    P. Grangier, B. Sanders, J. Vuckovic (eds): Focus on single photons on demand. New J. Phys. 6, (2004)Google Scholar
  83. 83.
    C.J. Chunnilall, I.P. Degiovanni, S. Kück, I. Müller, A.G. Sinclair, Metrology of single-photon sources and detectors: a review. Opt. Eng. 53, 081910–081910 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    G.S. Buller, R.J. Collins, Single-photon generation and detection. Meas. Sci. Technol. 21, 12002 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    E. Neu, C. Becher, Diamond-based single-photon sources and their application in quantum key distribution, in Quantum Information Processing with Diamond: Principles and Applications, ed. by S. Prawer, I. Aharonovich (Elsevier, 2014)Google Scholar
  86. 86.
    C. Santori, D. Fattal, Y. Yamamoto, Single-Photon Devices and Applications (Wiley, 2010)Google Scholar
  87. 87.
    P. Michler, Single Semiconductor Quantum Dots (Springer, Berlin, Heidelberg, 2010)Google Scholar
  88. 88.
    A. Migdall, S. Polyakov, J. Fan, J. Bienfang, Single-Photon Generation and Detection: Physics and Applications, (Academic Press, 2013)Google Scholar
  89. 89.
    E.M. Purcell, Spontaneous emission at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  90. 90.
    L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006)Google Scholar
  91. 91.
    A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    A. Aspect, P. Grangier, The first single-photon sources, in Single-Photon Generation and Detection, ed. by A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang (Elsevier, 2013), pp. 315–350Google Scholar
  93. 93.
    S.A. Castelletto, R.E. Scholten, Heralded single photon sources: a route towards quantum communication technology and photon standards. Eur. Phys. J.—Appl. Phys. 41, 181–194 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    H. Huang, A. Dorn, V. Bulovic, M.G. Bawendi, Electrically driven light emission from single colloidal quantum dots at room temperature. Appl. Phys. Lett. 90, 23110–23113 (2007)CrossRefGoogle Scholar
  95. 95.
    S. Brovelli, W.K. Bae, C. Galland, U. Giovanella, F. Meinardi, V.I. Klimov, Dual-color electroluminescence from dot-in-bulk nanocrystals. Nano Lett. 14, 486–494 (2014)ADSCrossRefGoogle Scholar
  96. 96.
    W.K. Bae, Y.-S. Park, J. Lim, D. Lee, L.A. Padilha, H. McDaniel, I. Robel, C. Lee, J.M. Pietryga, V.I. Klimov, Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013)CrossRefGoogle Scholar
  97. 97.
    B.N. Pal, I. Robel, A. Mohite, R. Laocharoensuk, D.J. Werder, V.I. Klimov, High-sensitivity p–n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012)CrossRefGoogle Scholar
  98. 98.
    B.N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, H. Htoon, “Giant” CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12, 331–336 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 6, 299–303 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    J. Forneris, P. Traina, D.G. Monticone, G. Amato, L. Boarino, G. Brida, I.P. Degiovanni, E. Enrico, E. Moreva, V. Grilj, N. Skukan, M. Jakšić, M. Genovese, P. Olivero, Electrical stimulation of non-classical photon emission from diamond color centers by means of sub-superficial graphitic electrodes. Sci. Rep. 5, 15901 (2015)Google Scholar
  101. 101.
    M. Nothaft, S. Höhla, F. Jelezko, N. Frühauf, J. Pflaum, J. Wrachtrup, Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3, 628 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    J.I. Gonzalez, T.-H. Lee, M.D. Barnes, Y. Antoku, R.M. Dickson, Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature. Phys. Rev. Lett. 93, 147402 (2004)ADSCrossRefGoogle Scholar
  103. 103.
    V.I. Klimov, Nanocrystal Quantum Dots, 2nd edn. (CRC Press, 2010)Google Scholar
  104. 104.
    A.L. Rogach (ed.), Semiconductor Nanocrystal Quantum Dots (Springer, Vienna, 2008)Google Scholar
  105. 105.
    J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004)CrossRefGoogle Scholar
  106. 106.
    H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox, Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321–1324 (2002)ADSCrossRefGoogle Scholar
  107. 107.
    J. Heo, T. Zhu, C. Zhang, J. Xu, P. Bhattacharya, Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots. Opt. Lett. 35, 547–549 (2010)ADSCrossRefGoogle Scholar
  108. 108.
    S.G. Lukishova, L.J. Bissell, V.M. Menon, N. Valappil, M.A. Hahn, C.M. Evans, B. Zimmerman, T.D. Krauss, C.R. Stroud, R.W. Boyd, Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources. J. Mod. Opt. 56, 167–174 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, J. Xu, Enhanced spontaneous emission at 1.55 µm from colloidal PbSe quantum dots in a Si photonic crystal microcavity. Appl. Phys. Lett. 90, 171105–3 (2007)ADSCrossRefGoogle Scholar
  110. 110.
    J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, P. Bhattacharya, Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Appl. Phys. Lett. 92, 261110 (2008)ADSCrossRefGoogle Scholar
  111. 111.
    M.T. Rakher, R. Bose, C.W. Wong, K. Srinivasan, Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide. Appl. Phys. Lett. 96, 161108 (2010)ADSCrossRefGoogle Scholar
  112. 112.
    A.G. Pattantyus-Abraham, H. Qiao, J. Shan, K.A. Abel, T.-S. Wang, F.C.J.M. van Veggel, J.F. Young, Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities. Nano Lett. 9, 2849–2854 (2009)ADSCrossRefGoogle Scholar
  113. 113.
    C.A. Foell, E. Schelew, H. Qiao, K.A. Abel, S. Hughes, F.C.J.M. van Veggel, J.F. Young, Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits. Opt. Express 20, 10453–10469 (2012)ADSCrossRefGoogle Scholar
  114. 114.
    Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth, “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008)CrossRefGoogle Scholar
  115. 115.
    O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013)ADSCrossRefGoogle Scholar
  116. 116.
    A.M. Keller, Y. Ghosh, M.S. DeVore, M.E. Phipps, M.H. Stewart, B.S. Wilson, D.S. Lidke, J.A. Hollingsworth, J.H. Werner, 3-Dimensional tracking of non-blinking “giant” quantum dots in live cells. Adv. Funct. Mater. 24, 4796–4803 (2014)CrossRefGoogle Scholar
  117. 117.
    B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, B. Dubertret, Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008)ADSCrossRefGoogle Scholar
  118. 118.
    F. García-Santamaría, Y. Chen, J. Vela, R.D. Schaller, J.A. Hollingsworth, V.I. Klimov, Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009)ADSCrossRefGoogle Scholar
  119. 119.
    M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino, L. Carbone, M. De Vittorio, A. Bramati, Effect of charging on CdSe/CdS dot-in-rods single-photon emission. Phys. Rev. B. 90, 35311 (2014)ADSCrossRefGoogle Scholar
  120. 120.
    F. Pisanello, G. Leménager, L. Martiradonna, L. Carbone, S. Vezzoli, P. Desfonds, P.D. Cozzoli, J.-P. Hermier, E. Giacobino, R. Cingolani, M. De Vittorio, A. Bramati, Non-blinking single-photon generation with anisotropic colloidal nanocrystals: towards room-temperature, efficient, colloidal quantum sources. Adv. Mater. 25, 1974–1980 (2013)CrossRefGoogle Scholar
  121. 121.
    F. Pisanello, L. Martiradonna, G. Leménager, P. Spinicelli, A. Fiore, L. Manna, J.-P. Hermier, R. Cingolani, E. Giacobino, M. De Vittorio, A. Bramati, Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Appl. Phys. Lett. 96, 33101 (2010)CrossRefGoogle Scholar
  122. 122.
    T. Du, J. Schneider, A.K. Srivastava, A.S. Susha, V.G. Chigrinov, H.S. Kwok, A.L. Rogach, Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods. ACS Nano 9, 11049–11055 (2015)CrossRefGoogle Scholar
  123. 123.
    A.M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer Science & Business Media, 2001)Google Scholar
  124. 124.
    R. Mildren, J. Rabeau, Optical Engineering of Diamond (Wiley, 2013)Google Scholar
  125. 125.
    S. Prawer, I. Aharonovich, Quantum Information Processing with Diamond: Principles and Applications (Elsevier, 2014)Google Scholar
  126. 126.
    I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics. Nat. Photonics 5, 397–405 (2011)ADSCrossRefGoogle Scholar
  127. 127.
    I. Aharonovich, S. Castelletto, D.A. Simpson, C.-H. Su, A.D. Greentree, S. Prawer, Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 76501 (2011)CrossRefGoogle Scholar
  128. 128.
    A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997)CrossRefGoogle Scholar
  129. 129.
    B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, J. Wrachtrup, Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. 95, 181109 (2009)ADSCrossRefGoogle Scholar
  130. 130.
    A.T. Collins, M.F. Thomaz, M.I.B. Jorge, Luminescence decay time of the 1.945 eV centre in type Ib diamond. J. Phys. C Solid State Phys. 16, 2177 (1983)ADSCrossRefGoogle Scholar
  131. 131.
    A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.P. Poizat, P. Grangier, Room temperature stable single-photon source. Eur. Phys. J.—At. Mol. Opt. Plasma Phys. 18, 191–196 (2002)Google Scholar
  132. 132.
    H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, R. Hanson, Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 43604 (2012)ADSCrossRefGoogle Scholar
  133. 133.
    A. Mohtashami, A.F. Koenderink, Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments. New J. Phys. 15, 43017 (2013)CrossRefGoogle Scholar
  134. 134.
    J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, H.-C. Chang, Nonblinking green emission from single H3 color centers in nanodiamonds. Appl. Phys. Lett. 98, 193116 (2011)ADSCrossRefGoogle Scholar
  135. 135.
    D.A. Simpson, E. Ampem-Lassen, B.C. Gibson, S. Trpkovski, F.M. Hossain, S.T. Huntington, A.D. Greentree, L.C.L. Hollenberg, S. Prawer, A highly efficient two level diamond based single photon source. Appl. Phys. Lett. 94, 203107–203107-3 (2009)ADSCrossRefGoogle Scholar
  136. 136.
    J.M. Smith, F. Grazioso, B.R. Patton, P.R. Dolan, M.L. Markham, D.J. Twitchen, Optical properties of a single-colour centre in diamond with a green zero-phonon line. New J. Phys. 13, 45005 (2011)CrossRefGoogle Scholar
  137. 137.
    C. Wang, C. Kurtsiefer, H. Weinfurter, B. Burchard, Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006)ADSCrossRefGoogle Scholar
  138. 138.
    E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 25012 (2011)CrossRefGoogle Scholar
  139. 139.
    E. Neu, M. Agio, C. Becher, Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt. Express 20, 19956–19971 (2012)ADSCrossRefGoogle Scholar
  140. 140.
    E. Neu, M. Fischer, S. Gsell, M. Schreck, C. Becher, Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys. Rev. B 84, 205211 (2011)ADSCrossRefGoogle Scholar
  141. 141.
    I. Aharonovich, S. Castelletto, B.C. Johnson, J.C. McCallum, D.A. Simpson, A.D. Greentree, S. Prawer, Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B 81, 121201 (2010)ADSCrossRefGoogle Scholar
  142. 142.
    I. Aharonovich, S. Castelletto, D.A. Simpson, A. Stacey, J. McCallum, A.D. Greentree, S. Prawer, Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009)ADSCrossRefGoogle Scholar
  143. 143.
    S. Castelletto, A. Boretti, Radiative and nonradiative decay rates in chromium-related centers in nanodiamonds. Opt. Lett. 36, 4224–4226 (2011)ADSCrossRefGoogle Scholar
  144. 144.
    D. Steinmetz, E. Neu, J. Meijer, W. Bolse, C. Becher, Single photon emitters based on Ni/Si related defects in single crystalline diamond. Appl. Phys. B 102, 451–458 (2011)ADSCrossRefGoogle Scholar
  145. 145.
    I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A.D. Greentree, F. Treussart, J.-F. Roch, S. Prawer, Enhanced single-photon emission in the near infrared from a diamond color center. Phys. Rev. B 79, 235316 (2009)ADSCrossRefGoogle Scholar
  146. 146.
    T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, J. Wrachtrup, Stable single-photon source in the near infrared. New J. Phys. 6, 98–98 (2004)ADSCrossRefGoogle Scholar
  147. 147.
    E. Wu, V. Jacques, H. Zeng, P. Grangier, F. Treussart, J.-F. Roch, Narrow-band single-photon emission in the near infrared for quantum key distribution. Opt. Express 14, 1296–1303 (2006)ADSCrossRefGoogle Scholar
  148. 148.
    J.R. Rabeau, Y.L. Chin, S. Prawer, F. Jelezko, T. Gaebel, J. Wrachtrup, Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 86, 131926 (2005)ADSCrossRefGoogle Scholar
  149. 149.
    E. Wu, J. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, J. Roch, Room temperature triggered single-photon source in the near infrared. New J. Phys. 9 (2007)ADSCrossRefGoogle Scholar
  150. 150.
    T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K.D. Jahnke, L.J. Rogers, B. Naydenov, F. Jelezko, S. Yamasaki, S. Nagamachi, T. Inubushi, N. Mizuochi, M. Hatano, Germanium-vacancy single color centers in diamond. Sci. Rep. 5, 12882 (2015)ADSCrossRefGoogle Scholar
  151. 151.
    H.-Q. Zhao, M. Fujiwara, S. Takeuchi, Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect. Opt. Express 20, 15628 (2012)ADSCrossRefGoogle Scholar
  152. 152.
    M. Leifgen, T. Schröder, F. Gädeke, R. Riemann, V. Métillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, O. Benson, Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution. New J. Phys. 16, 23021 (2014)ADSCrossRefGoogle Scholar
  153. 153.
    A.D. Greentree, I. Aharonovich, S. Castelletto, M.W. Doherty, L.P. McGuinness, D.A. Simpson, 21st-century applications of nanodiamonds. Opt. Photonics News 21, 20–25 (2010)CrossRefGoogle Scholar
  154. 154.
    J.R. Rabeau, S.T. Huntington, A.D. Greentree, S. Prawer, Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Appl. Phys. Lett. 86, 134104 (2005)ADSCrossRefGoogle Scholar
  155. 155.
    A.W. Schell, G. Kewes, T. Schröder, J. Wolters, T. Aichele, O. Benson, A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. Rev. Sci. Instrum. 82, 73709 (2011)CrossRefGoogle Scholar
  156. 156.
    T. Schröder, A.W. Schell, G. Kewes, T. Aichele, O. Benson, Fiber-integrated diamond-based single photon source. Nano Lett. 11, 198–202 (2011)ADSCrossRefGoogle Scholar
  157. 157.
    T. Gaebel, C. Bradac, J. Chen, J.M. Say, L. Brown, P. Hemmer, J.R. Rabeau, Size-reduction of nanodiamonds via air oxidation. Diam. Relat. Mater. 21, 28–32 (2012)ADSCrossRefGoogle Scholar
  158. 158.
    I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014)ADSCrossRefGoogle Scholar
  159. 159.
    I.I. Vlasov, O. Shenderova, S. Turner, O.I. Lebedev, A.A. Basov, I. Sildos, M. Rähn, A.A. Shiryaev, G. Van Tendeloo, Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010)CrossRefGoogle Scholar
  160. 160.
    C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010)ADSCrossRefGoogle Scholar
  161. 161.
    A. Wolcott, T. Schiros, M.E. Trusheim, E.H. Chen, D. Nordlund, R.E. Diaz, O. Gaathon, D. Englund, J.S. Owen, Surface structure of aerobically oxidized diamond nanocrystals. J. Phys. Chem. C 118, 26695–26702 (2014)CrossRefGoogle Scholar
  162. 162.
    R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask, P.N. Prasad, Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 19, 853–859 (2009)CrossRefGoogle Scholar
  163. 163.
    S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010)ADSCrossRefGoogle Scholar
  164. 164.
    S. Schietinger, L.S. de Menezes, B. Lauritzen, O. Benson, Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett. 9, 2477–2481 (2009)ADSCrossRefGoogle Scholar
  165. 165.
    S. Schietinger, Investigation, manipulation, and coupling of single nanoscopic and quantum emitters. Ph.D. thesis (Humboldt University, Berlin, 2012). http://edoc.hu-berlin.de/dissertationen/schietinger-stefan-2012-03-01/PDF/schietinger.pdf. Accessed 6 Mar 2016
  166. 166.
    S. Babu, J.-H. Cho, J.M. Dowding, E. Heckert, C. Komanski, S. Das, J. Colon, C.H. Baker, M. Bass, W.T. Self, S. Seal, Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chem. Commun. 46, 6915–6917 (2010)CrossRefGoogle Scholar
  167. 167.
    R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P.R. Hemmer, J. Wrachtrup, Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012)ADSCrossRefGoogle Scholar
  168. 168.
    R. Kolesov, K. Xia, R. Reuter, R. Stöhr, P. Siyushev, T. Inal, M. Jamali, J. Wrachtrup, J. Meijer, P.R. Hemmer, Optical detection of single rare-earth species in a crystal. Presented at Photonics West, 2–7 Feb 2013, San Francisco, CAGoogle Scholar
  169. 169.
    Y. Ying, Single instance rare-earth quantum computing with single Ce-ion read out. Presented at Laser Physics Workshop, Seminar 7. Quantum Information Science, p. 22, CD (2012)Google Scholar
  170. 170.
    M. Barnes, A. Mehta, T. Thundat, R. Bhargava, A. Bartko, L. Peyser, R.M. Dickson, Probing single ion luminescence in rare-earth doped nanocrystals. Presented at Laser Applications to Chemical and Environmental Analysis, p. ThA3 (Optical Society of America, 2002)Google Scholar
  171. 171.
    M.D. Barnes, A. Mehta, T. Thundat, R.N. Bhargava, V. Chhabra, B. Kulkarni, On–off blinking and multiple bright states of single europium ions in Eu3+:Y2O3 nanocrystals. J. Phys. Chem. B. 104, 6099–6102 (2000)CrossRefGoogle Scholar
  172. 172.
    A.P. Bartko, L.A. Peyser, R.M. Dickson, A. Mehta, T. Thundat, R. Bhargava, M.D. Barnes, Observation of dipolar emission patterns from isolated Eu3+:Y2O3 doped nanocrystals: new evidence for single ion luminescence. Chem. Phys. Lett. 358, 459–465 (2002)ADSCrossRefGoogle Scholar
  173. 173.
    A. Mehta, T. Thundat, M.D. Barnes, V. Chhabra, R. Bhargava, A.P. Bartko, R.M. Dickson, Size-correlated spectroscopy and imaging of rare-earth-doped nanocrystals. Appl. Opt. 42, 2132–2139 (2003)ADSCrossRefGoogle Scholar
  174. 174.
    E. Eichhammer, T. Utikal, S. Götzinger, V. Sandoghdar, Spectroscopic detection of single Pr3+ ions on the 3H41D2 transition. New J. Phys. 17, 83018 (2015)CrossRefGoogle Scholar
  175. 175.
    C. Yin, M. Rancic, G.G. de Boo, N. Stavrias, J.C. McCallum, M.J. Sellars, S. Rogge, Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013)ADSCrossRefGoogle Scholar
  176. 176.
    T. Utikal, E. Eichhammer, L. Petersen, A. Renn, S. Götzinger, V. Sandoghdar, Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014)ADSCrossRefGoogle Scholar
  177. 177.
    P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A.D. Wieck, R. Kolesov, J. Wrachtrup, Coherent properties of single rare-earth spin qubits. Nat. Commun. 5, 3895 (2014)ADSCrossRefGoogle Scholar
  178. 178.
    R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, J. Wrachtrup, Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys. Rev. B. 84, 153413 (2011)ADSCrossRefGoogle Scholar
  179. 179.
    S.K. Gayen, B.Q. Xie, Y.M. Cheung, Two-photon excitation of the lowest 4f2–4f5d near-ultraviolet transitions in Pr3+:Y3Al5O12. Phys. Rev. B. 45, 20–28 (1992)ADSCrossRefGoogle Scholar
  180. 180.
    J. Pejchal, M. Nikl, E. Mihokova et al., Pr3+-doped complex oxide single crystal scintillators. J. Phys. D Appl. Phys. 42, 055117 (2009)ADSCrossRefGoogle Scholar
  181. 181.
    M.J. Weber, Nonradiative decay from 5d states of rare-earths in crystals. Solid State Commun. 12, 741–744 (1973)ADSCrossRefGoogle Scholar
  182. 182.
    R. Kolesov, K. Xia, R. Reuter, M. Jamali, R. Stöhr, T. Inal, P. Siyushev, J. Wrachtrup, Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state. Phys. Rev. Lett. 111, 120502 (2013)ADSCrossRefGoogle Scholar
  183. 183.
    R.R. Jacobs, W.F. Krupke, M.J. Weber, Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d-4f rare-earth lasers. Appl. Phys. Lett. 33(5), 410–412 (1978)ADSCrossRefGoogle Scholar
  184. 184.
    S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014)ADSCrossRefGoogle Scholar
  185. 185.
    F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, G.V. Astakhov, Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015)ADSCrossRefGoogle Scholar
  186. 186.
    F. Fuchs, V.A. Soltamov, S. Väth, P.G. Baranov, E.N. Mokhov, G.V. Astakhov, V. Dyakonov, Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013)ADSCrossRefGoogle Scholar
  187. 187.
    A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer, J.C. McCallum, B.C. Johnson, Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015)ADSCrossRefGoogle Scholar
  188. 188.
    A. Lohrmann, B.C. Johnson, J.C. McCallum, S. Castelletto, A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017)ADSCrossRefGoogle Scholar
  189. 189.
    A.J. Morfa, B.C. Gibson, M. Karg, T.J. Karle, A.D. Greentree, P. Mulvaney, S. Tomljenovic-Hanic, Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett. 12, 949–954 (2012)ADSCrossRefGoogle Scholar
  190. 190.
    S. Choi, B.C. Johnson, S. Castelletto, C. Ton-That, M.R. Phillips, I. Aharonovich, Single photon emission from ZnO nanoparticles. Appl. Phys. Lett. 104, 261101 (2014)ADSCrossRefGoogle Scholar
  191. 191.
    N.R. Jungwirth, H.-S. Chang, M. Jiang, G.D. Fuchs, Polarization spectroscopy of defect-based single photon sources in ZnO. ACS Nano 10, 1210–1215 (2016)CrossRefGoogle Scholar
  192. 192.
    S. Choi, A.M. Berhane, A. Gentle, C. Ton-That, M.R. Phillips, I. Aharonovich, Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature. ACS Appl. Mater. Interfaces. 7, 5619–5623 (2015)CrossRefGoogle Scholar
  193. 193.
    X. He, N.F. Hartmann, X. Ma, Y. Kim, R. Ihly, J.L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S.K. Doorn, Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 11, 577–582 (2017)CrossRefGoogle Scholar
  194. 194.
    T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016)ADSCrossRefGoogle Scholar
  195. 195.
    F.T. Rabouw, N.M.B. Cogan, A.C. Berends, W. van der Stam, D. Vanmaekelbergh, A.F. Koenderink, T.D. Krauss, C. de M. Donega, Non-blinking single-photon emitters in silica. Sci. Rep. 6, 21187 (2016)Google Scholar
  196. 196.
    J. Wrachtrup, 2D materials: single photons at room temperature. Nat. Nanotechnol. 11, 7–8 (2016)ADSCrossRefGoogle Scholar
  197. 197.
    I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016)ADSCrossRefGoogle Scholar
  198. 198.
    O. Benson, Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011)ADSCrossRefGoogle Scholar
  199. 199.
    X. Brokmann, E. Giacobino, M. Dahan, J.P. Hermier, Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals. Appl. Phys. Lett. 85, 712–714 (2004)ADSCrossRefGoogle Scholar
  200. 200.
    T. Schröder, F. Gädeke, M.J. Banholzer, O. Benson, Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 55017 (2011)CrossRefGoogle Scholar
  201. 201.
    L. Marseglia, J.P. Hadden, A.C. Stanley-Clarke, J.P. Harrison, B. Patton, Y.-L.D. Ho, B. Naydenov, F. Jelezko, J. Meijer, P.R. Dolan, J.M. Smith, J.G. Rarity, J.L. O’Brien, Nanofabricated solid immersion lenses registered to single emitters in diamond. Appl. Phys. Lett. 98, 133107 (2011)ADSCrossRefGoogle Scholar
  202. 202.
    K.G. Lee, X.W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, S. Götzinger, A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photon. 5, 166–169 (2011)ADSCrossRefGoogle Scholar
  203. 203.
    X.-W. Chen, S. Götzinger, V. Sandoghdar, 99% efficiency in collecting photons from a single emitter. Opt. Lett. 36, 3545–3547 (2011)ADSCrossRefGoogle Scholar
  204. 204.
    X.-L. Chu, T.J.K. Brenner, X.-W. Chen, Y. Ghosh, J.A. Hollingsworth, V. Sandoghdar, S. Götzinger, Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica 1, 203–208 (2014)CrossRefGoogle Scholar
  205. 205.
    S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, 2006)Google Scholar
  206. 206.
    G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University Press, 2010)Google Scholar
  207. 207.
    P.R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994)Google Scholar
  208. 208.
    R.K. Chang, A.J. Campillo, Optical Processes in Microcavities (World Scientific, 1996)Google Scholar
  209. 209.
    H. Yokoyama, K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995)Google Scholar
  210. 210.
    H. Benisty, J.-M. Gerard, R. Houdre, J. Rarity, C. Weisbuch, Confined Photon Systems: Fundamentals and Applications (Springer, Berlin, Heidelberg, 1999)zbMATHCrossRefGoogle Scholar
  211. 211.
    K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)ADSCrossRefGoogle Scholar
  212. 212.
    A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoglu, Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005)ADSCrossRefGoogle Scholar
  213. 213.
    K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E.L. Hu, A. Imamoglu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)ADSCrossRefGoogle Scholar
  214. 214.
    S. Strauf, F. Jahnke, Single quantum dot nanolaser. Laser Photonics Rev. 5, 607–633 (2011)Google Scholar
  215. 215.
    S. Noda, M. Fujita, T. Asano, Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics 1, 449–458 (2007)ADSCrossRefGoogle Scholar
  216. 216.
    S.G. Lukishova, J.M. Winkler, L.J. Bissell, D. Mihaylova, A.C. Liapis, Z. Shi, D. Goldberg, V.M. Menon, R.W. Boyd, G. Chen, P. Prasad, Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures, in Proceedings of SPIE, Emerging Technologies in Security and Defense II; and Quantum-Physics-based Information Security III, 9254, paper 9254-05, Oct 2014Google Scholar
  217. 217.
    A.C. Liapis, B. Gao, M.R. Siddiqui, Z. Shi, R.W. Boyd, On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities. Appl. Phys. Lett. 108, 21105 (2016)CrossRefGoogle Scholar
  218. 218.
    Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, M. Galli, Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million. Appl. Phys. Lett. 104, 241101 (2014)ADSCrossRefGoogle Scholar
  219. 219.
    H.Y. Ryu, M. Notomi, Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity. Opt. Lett. 28, 2390–2392 (2003)ADSCrossRefGoogle Scholar
  220. 220.
    L. Sanchis, M.J. Cryan, J. Pozo, I.J. Craddock, J.G. Rarity, Ultrahigh Purcell factor in photonic crystal slab microcavities. Phys. Rev. B. 76, 45118 (2007)ADSCrossRefGoogle Scholar
  221. 221.
    D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler, M. Kamp, A. Forchel, Y. Yamamoto, Photon Antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402–117404 (2007)ADSCrossRefGoogle Scholar
  222. 222.
    M. Lončar, A. Faraon, Quantum photonic networks in diamond. MRS Bull. 38, 144–148 (2013)CrossRefGoogle Scholar
  223. 223.
    A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 33604 (2012)ADSCrossRefGoogle Scholar
  224. 224.
    B.J.M. Hausmann, B.J. Shields, Q. Quan, Y. Chu, N.P. de Leon, R. Evans, M.J. Burek, A.S. Zibrov, M. Markham, D.J. Twitchen, H. Park, M.D. Lukin, M. Loncǎr, Coupling of NV centers to photonic crystal nanobeams in diamond. Nano Lett. 13, 5791–5796 (2013)ADSCrossRefGoogle Scholar
  225. 225.
    Q. Quan, M. Loncar, Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 19, 18529–18542 (2011)ADSCrossRefGoogle Scholar
  226. 226.
    L. Li, T. Schröder, E.H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M.E. Trusheim, M. Lu, J. Mower, M. Cotlet, M.L. Markham, D.J. Twitchen, D. Englund, Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015)CrossRefGoogle Scholar
  227. 227.
    L. Li, E.H. Chen, J. Zheng, S.L. Mouradian, F. Dolde, T. Schröder, S. Karaveli, M.L. Markham, D.J. Twitchen, D. Englund, Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 15, 1493–1497 (2015)ADSCrossRefGoogle Scholar
  228. 228.
    L. Li, T. Schröder, E.H. Chen, H. Bakhru, D. Englund, One-dimensional photonic crystal cavities in single-crystal diamond. Photonics Nanostruct.—Fundam. Appl. 15, 130–136 (2015)ADSCrossRefGoogle Scholar
  229. 229.
    J. Riedrich-Möller, C. Arend, C. Pauly, F. Mücklich, M. Fischer, S. Gsell, M. Schreck, C. Becher, Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014)ADSCrossRefGoogle Scholar
  230. 230.
    J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher, One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7, 69–74 (2012)ADSCrossRefGoogle Scholar
  231. 231.
    M.J. Burek, N.P. de Leon, B.J. Shields, B.J.M. Hausmann, Y. Chu, Q. Quan, A.S. Zibrov, H. Park, M.D. Lukin, M. Lončar, Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett. 12, 6084–6089 (2012)ADSCrossRefGoogle Scholar
  232. 232.
    M.J. Burek, Y. Chu, M.S.Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M.D. Lukin, M. Lončar, High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014)ADSCrossRefGoogle Scholar
  233. 233.
    B.J.M. Hausmann, I.B. Bulu, P.B. Deotare, M. McCutcheon, V. Venkataraman, M.L. Markham, D.J. Twitchen, M. Lončar, Integrated high-quality factor optical resonators in diamond. Nano Lett. 13, 1898–1902 (2013)ADSCrossRefGoogle Scholar
  234. 234.
    C.F. Wang, R. Hanson, D.D. Awschalom, E.L. Hu, T. Feygelson, J. Yang, J.E. Butler, Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007)ADSCrossRefGoogle Scholar
  235. 235.
    T. Zhong, J. Rochman, J.M. Kindem, E. Miyazono, A. Faraon, High quality factor nanophotonic resonators in bulk rare-earth doped crystals. Opt. Express 24, 536–544 (2016)ADSCrossRefGoogle Scholar
  236. 236.
    T. Zhong, J.M. Kindem, E. Miyazono, A. Faraon, Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals. Nat. Commun. 6, 8206 (2015)ADSCrossRefGoogle Scholar
  237. 237.
    E. Miyazono, T. Zhong, I. Craiciu, J.M. Kindem, A. Faraon, Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories. Appl. Phys. Lett. 108, 11111 (2016)ADSCrossRefGoogle Scholar
  238. 238.
    J. Wolters, A.W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, O. Benson, Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010)ADSCrossRefGoogle Scholar
  239. 239.
    T. van der Sar, J. Hagemeier, W. Pfaff, E.C. Heeres, S.M. Thon, H. Kim, P.M. Petroff, T.H. Oosterkamp, D. Bouwmeester, R. Hanson, Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011)ADSCrossRefGoogle Scholar
  240. 240.
    D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M.D. Lukin, Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010)ADSCrossRefGoogle Scholar
  241. 241.
    I. Fushman, D. Englund, J. Vučković, Coupling of PbS quantum dots to photonic crystal cavities at room temperature. Appl. Phys. Lett. 87, 241102–241103 (2005)ADSCrossRefGoogle Scholar
  242. 242.
    R. Bose, X. Yang, R. Chatterjee, J. Gao, C.W. Wong, Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 µm at room temperature. Appl. Phys. Lett. 90, 111117–3 (2007)ADSCrossRefGoogle Scholar
  243. 243.
    D.F. Dorfner, T. Hürlimann, G. Abstreiter, J.J. Finley, Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots. Appl. Phys. Lett. 91, 233111 (2007)ADSCrossRefGoogle Scholar
  244. 244.
    C.B. Poitras, M. Lipson, H. Du, M.A. Hahn, T.D. Krauss, Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity. Appl. Phys. Lett. 82, 4032–4034 (2003)ADSCrossRefGoogle Scholar
  245. 245.
    N. Valappil, M. Luberto, V.M. Menon, I. Zeylikovich, T.K. Gayen, J. Franco, B.B. Das, R.R. Alfano, Solution processed microcavity structures with embedded quantum dots. Photonics Nanostruct—Fundam. Appl. 5, 184–188 (2007)ADSCrossRefGoogle Scholar
  246. 246.
    D. Goldberg, V.M. Menon, Enhanced amplified spontaneous emission from colloidal quantum dots in all-dielectric monolithic microcavities. Appl. Phys. Lett. 102, 81119–81119-4 (2013)ADSCrossRefGoogle Scholar
  247. 247.
    S.G. Lukishova, J.M. Winkler, D. Mihaylova, A. Liapis, L.J. Bissell, David Goldberg, V.M. Menon, Z. Shi, R.W. Boyd, G. Chen, P. Prasad, Nanocrystal fluorescence in photonic bandgap microcavities and plasmonic nanoantennas. J. Phys. Conf. Ser. 594, 12005 (2015)Google Scholar
  248. 248.
    L. Bissell, D. Goldberg, S.G. Lukishova, V.M. Menon, Quantum dot single-photon source in a Bragg reflector microcavity with a defect layer. Presented at Frontiers in Optics 2012/Laser Science XXVIII, p. LTh1I.2, 14–18 Oct, Rochester, NY (2012)Google Scholar
  249. 249.
    L. Martiradonna, M. De Vittorio, L. Troisi, M.T. Todaro, M. Mazzeo, T. Stomeo, M. Anni, R. Cingolani, G. Gigli, Fabrication of hybrid organic–inorganic vertical microcavities through imprint technology. Microelectron. Eng. 78–79, 593–597 (2005)CrossRefGoogle Scholar
  250. 250.
    L. Martiradonna, L. Carbone, M.D. Giorgi, L. Manna, G. Gigli, R. Cingolani, M.D. Vittorio, High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. Appl. Phys. Lett. 88, 181108 (2006)ADSCrossRefGoogle Scholar
  251. 251.
    A. Qualtieri, G. Morello, P. Spinicelli, M.T. Todaro, T. Stomeo, L. Martiradonna, M.D. Giorgi, X. Quelin, S. Buil, A. Bramati, J.P. Hermier, R. Cingolani, M.D. Vittorio, Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources. New J. Phys. 11, 33025 (2009)CrossRefGoogle Scholar
  252. 252.
    A. Qualtieri, G. Morello, P. Spinicelli, M.T. Todaro, T. Stomeo, L. Martiradonna, M. De Giorni, X. Quélin, S. Buil, A. Bramati, J.P. Hermier, R. Cingolani, M. De Vittorio, Room temperature single-photon sources based on single colloidal nanocrystals in microcavities. Superlattices Microstruct. 47, 187–191 (2010)ADSCrossRefGoogle Scholar
  253. 253.
    M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, R. Bratschitsch, Colloidal quantum dots in all-dielectric high-Q pillar microcavities. Nano Lett. 7, 2897–2900 (2007)ADSCrossRefGoogle Scholar
  254. 254.
    T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K.M. Whitaker, D.R. Gamelin, A. Leitenstorfer, R. Bratschitsch, Colloidal ZnO quantum dots in ultraviolet pillar microcavities. Opt. Express 16, 9791–9794 (2008)ADSCrossRefGoogle Scholar
  255. 255.
    J. Jasieniak, C. Sada, A. Chiasera, M. Ferrari, A. Martucci, P. Mulvaney, Sol–gel based vertical optical microcavities with quantum dot defect layers. Adv. Funct. Mater. 18, 3772–3779 (2008)CrossRefGoogle Scholar
  256. 256.
    L. Martiradonna, T. Stomeo, M.D. Giorgi, R. Cingolani, M.D. Vittorio, Nanopatterning of colloidal nanocrystals emitters dispersed in a PMMA matrix by e-beam lithography. Microelectron. Eng. 83, 1478–1481 (2006)CrossRefGoogle Scholar
  257. 257.
    L. Martiradonna, T. Stomeo, L. Carbone, G. Morello, A. Salhi, M. De Giorgi, R. Cingolani, M. De Vittorio, Nanopositioning of colloidal nanocrystal emitters by means of photolithography and e-beam lithography. Phys. Status Solidi B 243, 3972–3975 (2006)ADSCrossRefGoogle Scholar
  258. 258.
    S.G. Lukishova, L.J. Bissell, J. Winkler, C.R. Stroud, Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host. Opt. Lett. 37, 1259–1261 (2012)ADSCrossRefGoogle Scholar
  259. 259.
    R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013)ADSCrossRefGoogle Scholar
  260. 260.
    H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T.W. Hänsch, D. Hunger, Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond. Phys. Rev. A 88, 53812 (2013)ADSCrossRefGoogle Scholar
  261. 261.
    R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A.W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, C. Becher, Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Appl. Phys. Lett. 105, 73113 (2014)CrossRefGoogle Scholar
  262. 262.
    S. Johnson, P.R. Dolan, T. Grange, A.A.P. Trichet, G. Hornecker, Y.C. Chen, L. Weng, G.M. Hughes, A.A.R. Watt, A. Auffèves, J.M. Smith, Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond. New J. Phys. 17, 122003 (2015)ADSCrossRefGoogle Scholar
  263. 263.
    A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 4, 457–482 (2010)ADSCrossRefGoogle Scholar
  264. 264.
    A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering gallery modes I: basics. IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006)ADSCrossRefGoogle Scholar
  265. 265.
    A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering gallery modes II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006)ADSCrossRefGoogle Scholar
  266. 266.
    Y.P. Rakovich, J.F. Donegan, Photonic atoms and molecules. Laser Photonics Rev. 4, 179–191 (2010)ADSCrossRefGoogle Scholar
  267. 267.
    J. Ward, O. Benson, WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5, 553–570 (2011)ADSCrossRefGoogle Scholar
  268. 268.
    T.J. Kippenberg, Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities. Ph.D. thesis (California Institute of Technology, Pasadena, CA, 2004)Google Scholar
  269. 269.
    M.V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, W. Langbein, Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission. Nano Lett. 1, 309–314 (2001)ADSCrossRefGoogle Scholar
  270. 270.
    S. Schietinger, O. Benson, Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator. J. Phys. B At. Mol. Opt. Phys. 42, 114001 (2009)ADSCrossRefGoogle Scholar
  271. 271.
    M. Larsson, K.N. Dinyari, H. Wang, Composite optical microcavity of diamond nanopillar and silica microsphere. Nano Lett. 9, 1447–1450 (2009)ADSCrossRefGoogle Scholar
  272. 272.
    A.W. Schell, Photonic applications and hybrid integration of single nitrogen vacancy centres in nanodiamond. Ph.D thesis (Humboldt University, Berlin, 2014)Google Scholar
  273. 273.
    M. Gregor, R. Henze, T. Schröder, O. Benson, On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator. Appl. Phys. Lett. 95, 153110 (2009)ADSCrossRefGoogle Scholar
  274. 274.
    A.W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures. Sci. Rep. 3, 1577 (2013)ADSCrossRefGoogle Scholar
  275. 275.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
  276. 276.
    V. Klimov, Nanoplasmonics (CRC Press, 2014)Google Scholar
  277. 277.
    M. Agio, A. Alù, Optical Antennas (Cambridge University Press, 2013)Google Scholar
  278. 278.
    P. Bharadwaj, Antenna-coupled photoemission from single quantum emitters. Ph.D. thesis (University of Rochester, Rochester, NY, 2012)Google Scholar
  279. 279.
    P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas. Adv. Opt. Photonics 1, 438 (2009)ADSCrossRefGoogle Scholar
  280. 280.
    L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)ADSCrossRefGoogle Scholar
  281. 281.
    A.E. Krasnok, I.S. Maksymov, A.I. Denisyuk, P.A. Belov, A.E. Miroshnichenko, C.R. Simovski, Yu.S. Kivshar, Optical nanoantennas. Physics-Uspekhi 56(6), 539 (2013)ADSCrossRefGoogle Scholar
  282. 282.
    B. Hecht, P. Mühlschlegel, J.N. Farahani, H.-J. Eisler, D.W. Pohl, Resonant optical antennas and single emitters, in Tip Enhancement, ed. by S. Kawata, V.M. Shalaev (Elsevier, 2011), pp. 275–307Google Scholar
  283. 283.
    C. Ciracì, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012)ADSCrossRefGoogle Scholar
  284. 284.
    A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)ADSCrossRefGoogle Scholar
  285. 285.
    G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835–840 (2014)ADSCrossRefGoogle Scholar
  286. 286.
    T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen, Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, Article number 7788 (2015)Google Scholar
  287. 287.
    A. Rose, T.B. Hoang, F. McGuire, J.J. Mock, C. Ciracì, D.R. Smith, M.H. Mikkelsen, Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014)ADSCrossRefGoogle Scholar
  288. 288.
    T.B. Hoang, G.M. Akselrod, M.H. Mikkelsen, Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016)ADSCrossRefGoogle Scholar
  289. 289.
    P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002–113004 (2006)ADSCrossRefGoogle Scholar
  290. 290.
    L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar, Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt. Lett. 32, 1623–1625 (2007)ADSCrossRefGoogle Scholar
  291. 291.
    M. Agio, Optical antennas as nanoscale resonators. Nanoscale 4, 692–706 (2012)ADSCrossRefGoogle Scholar
  292. 292.
    M. Barth, N. Nusse, B. Lochel, O. Benson, Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Opt. Lett. 34, 1108–1110 (2009)ADSCrossRefGoogle Scholar
  293. 293.
    T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995)ADSCrossRefGoogle Scholar
  294. 294.
    M.S. Anderson, Nearfield surface enhanced spectroscopy using targeted nanoparticle deposition. Appl. Phys. Lett. 92, 123101 (2008)ADSCrossRefGoogle Scholar
  295. 295.
    J. Wolters, G. Kewes, A.W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, O. Benson, Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities. Phys. Status Solidi B 249, 918–924 (2012)ADSCrossRefGoogle Scholar
  296. 296.
    D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen, Plasmonic antennas, positioning, and coupling of individual quantum systems. Phys. Status Solidi B 249, 666–677 (2012)ADSCrossRefGoogle Scholar
  297. 297.
    Y. Alaverdyan, N. Vamivakas, J. Barnes, C. Lebouteiller, J. Hare, M. Atatüre, Spectral tunability of a plasmonic antenna with a dielectric nanocrystal. Opt. Express 19, 18175 (2011)ADSCrossRefGoogle Scholar
  298. 298.
    M.G. Harats, N. Livneh, R. Rapaport, Design, fabrication and characterization of a hybrid metal-dielectric nanoantenna with a single nanocrystal for directional single photon emission. Opt. Mater. Express 7(3), 834–843 (2017)ADSCrossRefGoogle Scholar
  299. 299.
    N. Livneh, M.G. Harats, D. Istrati, H.S. Eisenberg, R. Rapaport, Highly directional room-temperature single photon device. Nano Lett. 16, 2527–2532 (2016)ADSCrossRefGoogle Scholar
  300. 300.
    E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, G. von Plessen, D.I. Gittins, K.S. Mayya, F. Caruso, Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 70, 205424 (2004)ADSCrossRefGoogle Scholar
  301. 301.
    G.T. Boyd, Z.H. Yu, Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B. 33, 7923–7936 (1986)ADSCrossRefGoogle Scholar
  302. 302.
    M.R. Beversluis, A. Bouhelier, L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003)ADSCrossRefGoogle Scholar
  303. 303.
    Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, N. Gu, Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids Surf. Physicochem. Eng. Asp. 278, 33–38 (2006)CrossRefGoogle Scholar
  304. 304.
    J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht, Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1, 150 (2010)CrossRefGoogle Scholar
  305. 305.
    K.J. Russell, T.-L. Liu, S. Cui, E.L. Hu, Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics 6, 459–462 (2012)ADSCrossRefGoogle Scholar
  306. 306.
    K.J. Russell, E.L. Hu, Gap-mode plasmonic nanocavity. Appl. Phys. Lett. 97, 163115 (2010)ADSCrossRefGoogle Scholar
  307. 307.
    R. Esteban, T.V. Teperik, J.J. Greffet, Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104 (2010)Google Scholar
  308. 308.
    C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, A. Maitre, Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516–1521 (2013)ADSCrossRefGoogle Scholar
  309. 309.
    M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, H. Ming, Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering. Plasmonics 6, 515–519 (2011)CrossRefGoogle Scholar
  310. 310.
    J.B. Lassiter, F. McGuire, J.J. Mock, C. Ciracì, R.T. Hill, B.J. Wiley, A. Chilkoti, D.R. Smith, Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 13, 5866–5872 (2013)ADSCrossRefGoogle Scholar
  311. 311.
    C.T. Yuan, Y.C. Wang, H.W. Cheng, H.S. Wang, M.Y. Kuo, M.H. Shih, J. Tang, Modification of fluorescence properties in single colloidal quantum dots by coupling to plasmonic gap modes. J. Phys. Chem. C 117, 12762–12768 (2013)CrossRefGoogle Scholar
  312. 312.
    S.P. Eliseev, A.G. Vitukhnovsky, D.A. Chubich, N.S. Kurochkin, V.V. Sychev, A.A. Marchenko, Picosecond time of spontaneous emission in plasmonic patch nanoantennas. JETP Lett. 103(2), 82–86 (2016)ADSCrossRefGoogle Scholar
  313. 313.
    A. Moreau, C. Ciracì, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith, Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012)ADSCrossRefGoogle Scholar
  314. 314.
    A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)ADSCrossRefGoogle Scholar
  315. 315.
    J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008)ADSCrossRefGoogle Scholar
  316. 316.
    M.A. Noginov, Y.A. Barnakov, G. Zhu, T. Tumkur, H. Li, E.E. Narimanov, Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett. 94, 151105 (2009)ADSCrossRefGoogle Scholar
  317. 317.
    M.A. Noginov, H. Li, Y.A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C.E. Bonner, M. Mayy, Z. Jacob, E.E. Narimanov, Controlling spontaneous emission with metamaterials. Opt. Lett. 35, 1863–1865 (2010)ADSCrossRefGoogle Scholar
  318. 318.
    A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)ADSCrossRefGoogle Scholar
  319. 319.
    M.Y. Shalaginov, S. Bogdanov, V.V. Vorobyov, A.S. Lagutchev, A.V. Akimov, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon sources with metamaterials, in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, ed. by S.A. Malinovskaya, I. Novikova (World Scientific, 2015), pp. 123–148Google Scholar
  320. 320.
    Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012)ADSCrossRefGoogle Scholar
  321. 321.
    C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 63001 (2012)CrossRefGoogle Scholar
  322. 322.
    J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 8100–8116 (2012)ADSCrossRefGoogle Scholar
  323. 323.
    Z. Jacob, J.-Y. Kim, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Engineering photonic density of states using metamaterials. Appl. Phys. B 100, 215–218 (2010)ADSCrossRefGoogle Scholar
  324. 324.
    M.Y. Shalaginov, V.V. Vorobyov, J. Liu, M. Ferrera, A.V. Akimov, A. Lagutchev, A.N. Smolyaninov, V.V. Klimov, J. Irudayaraj, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc)N hyperbolic metamaterial. Laser Photonics Rev. 9, 120–127 (2015)ADSCrossRefGoogle Scholar
  325. 325.
    G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012)ADSCrossRefGoogle Scholar
  326. 326.
    G.V. Naik, B. Saha, J. Liu, S.M. Saber, E.A. Stach, J.M.K. Irudayaraj, T.D. Sands, V.M. Shalaev, A. Boltasseva, Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. 111, 7546–7551 (2014)ADSCrossRefGoogle Scholar
  327. 327.
    M.Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A.V. Kildishev, V.M. Shalaev, Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Appl. Phys. Lett. 102, 173114 (2013)ADSCrossRefGoogle Scholar
  328. 328.
    H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205–209 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  329. 329.
    K.V. Sreekanth, K.H. Krishna, A.D. Luca, G. Strangi, Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci. Rep. 4, 6340 (2014)CrossRefGoogle Scholar
  330. 330.
    D. Lu, J.J. Kan, E.E. Fullerton, Z. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9, 48–53 (2014)ADSCrossRefGoogle Scholar
  331. 331.
    T. Galfsky, H.N.S. Krishnamoorthy, W. Newman, E.E. Narimanov, Z. Jacob, V.M. Menon, Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction. Optica. 2, 62–65 (2015)CrossRefGoogle Scholar
  332. 332.
    T. Galfsky, J. Gu, E.E. Narimanov, V.M. Menon, Photonic hypercrystals for control of light -matter interactions. PNAS. 114, 5125–5129 (2017)Google Scholar
  333. 333.
    S.G. Lukishova, A.C. Liapis, L.J. Bissell, G.M. Gehring, R.W. Boyd, Single-photon experiments with liquid crystals for quantum science and quantum engineering applications. Liq. Cryst. Rev. 2, 111–129 (2014)CrossRefGoogle Scholar
  334. 334.
    S.G. Lukishova, R.W. Boyd, C.R. Stroud, Efficient room-temperature source of polarized single photons. http://www.google.com/patents/US7253871 (2007)
  335. 335.
    S.G. Lukishova, A.W. Schmid, C.M. Supranowitz, N. Lippa, A.J. McNamara, R.W. Boyd, C.R. Stroud, Dye-doped cholesteric-liquid-crystal room-temperature single-photon source. J. Mod. Opt. 51, 1535–1547 (2004)ADSCrossRefGoogle Scholar
  336. 336.
    S. Lukishova, R. Knox, P. Freivald, A. McNamara, R. Boyd, C. Stroud, A. Schmid, K. Marshall, Single-photon source for quantum information based on single dye molecule fluorescence in liquid crystal host. Mol. Cryst. Liq. Cryst. 454, 1/[403]–14/[416] (2006)Google Scholar
  337. 337.
    S.G. Lukishova, Bissell, J. Luke, C.R. Stroud, R.W. Boyd, Room temperature single photon sources with definite circular and linear polarizations. Opt. Spectrosc. 108, 417–424 (2010)ADSCrossRefGoogle Scholar
  338. 338.
    S.G. Lukishova, Liquid crystals under two extremes: (1) high-power laser irradiation, and (2) single-photon level. Mol. Cryst. Liq. Cryst. 559, 127–157 (2012)CrossRefGoogle Scholar
  339. 339.
    S.G. Lukishova, A.W. Schmid, R. Knox, P. Freivald, L.J. Bissell, R.W. Boyd, C.R. Stroud, K.L. Marshall, Room temperature source of single photons of definite polarization. J. Mod. Opt. 54, 417–429 (2007)ADSCrossRefGoogle Scholar
  340. 340.
    S.G. Lukishova, J.M. Winkler, L.J. Bissell, Quantum dot fluorescence in photonic bandgap glassy cholesteric liquid crystal structures: microcavity resonance under cw-excitation, antibunching and decay time. Mol. Cryst. Liq. Cryst. 595, 98–105 (2014)CrossRefGoogle Scholar
  341. 341.
    L. Pelliser, M. Manceau, C. Lethiec, D. Coursault, S. Vezzoli, G. Leménager, L. Coolen, M. DeVittorio, F. Pisanello, L. Carbone, A. Maitre, A. Bramati, E. Lacaze, Alignment of rod-shaped single-photon emitters driven by line defects in liquid crystals. Adv. Funct. Mater. 25, 1719–1726 (2015)CrossRefGoogle Scholar
  342. 342.
    M. Manceau: Single CdSe/CdS dot-in-rods fluorescence properties. Ph.D. thesis, University of Pierre et Marie Curie, Paris (2014). https://hal.archives-ouvertes.fr/tel-01101939. Accessed 25 June 2016
  343. 343.
    I.P. Il’chishin, E.A. Tikhonov, V.G. Tishchenko, M.T. Shpak, Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 32, 24–27 (1980)ADSGoogle Scholar
  344. 344.
    V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genack, Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23, 1707–1709 (1998)ADSCrossRefGoogle Scholar
  345. 345.
    L.M. Blinov, V. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1996)Google Scholar
  346. 346.
    V.G. Chigrinov, V.M. Kozenkov, H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008)Google Scholar
  347. 347.
    V.G. Chigrinov, Photoaligning and photopatterning—a new challenge in liquid crystal photonics. Crystals. 3, 149–162 (2013)CrossRefGoogle Scholar
  348. 348.
    P. Pieranski, Classroom experiments with chiral liquid crystals, in Chirality in Liquid Crystals, ed. by H.-S. Kitzerow, C. Bahr (Springer, 2001), pp. 28–66Google Scholar
  349. 349.
    P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, A. Munoz, Photonics and lasing in liquid crystal materials. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 364, 2747–2761 (2006)ADSCrossRefGoogle Scholar
  350. 350.
    H. Coles, S. Morris, Liquid-crystal lasers. Nat. Photonics 4, 676–685 (2010)ADSCrossRefGoogle Scholar
  351. 351.
    L.M. Blinov, R. Bartolino (eds.), Liquid Crystal Microlasers (Transworld Research Network, Trivandrum, 2010)Google Scholar
  352. 352.
    G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, M.P.D. Santo, M.A. Matranga, Different approaches of employing cholesteric liquid crystals in dye lasers. Mater. Sci. Appl. 2, 116 (2011)Google Scholar
  353. 353.
    S.K.H. Wei, S.H. Chen, K. Dolgaleva, S.G. Lukishova, R.W. Boyd, Robust organic lasers comprising glassy-cholesteric pentafluorene doped with a red-emitting oligofluorene. Appl. Phys. Lett. 94, 41111–41113 (2009)CrossRefGoogle Scholar
  354. 354.
    K. Dolgaleva, S.K.H. Wei, S.G. Lukishova, S.H. Chen, K. Schwertz, R.W. Boyd, Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye. J. Opt. Soc. Am. B. 25, 1496–1504 (2008)ADSCrossRefGoogle Scholar
  355. 355.
    T.J. Bunning, F.-H. Kreuzer, Cyclosiloxane-based liquid crystalline materials. Trends Polym Sci. 3, 318–323 (1995)Google Scholar
  356. 356.
    S.G. Lukishova, A.W. Schmid, Near-field optical microscopy of defects in cholesteric oligomeric liquid crystal films. Mol. Cryst. Liq. Cryst. 454, 15–21 (2006)Google Scholar
  357. 357.
    J.Y.P. Butter, B.R. Crenshaw, C. Weder, B. Hecht, Single-molecule spectroscopy of uniaxially oriented terrylene in polyethylene. ChemPhysChem 7, 261–265 (2006)CrossRefGoogle Scholar
  358. 358.
    D. Coursault, B. Zappone, A. Coati, A. Boulaoued, L. Pelliser, D. Limagne, N. Boudet, B.H. Ibrahim, A. de Martino, M. Alba, M. Goldmann, Y. Garreau, B. Gallas, E. Lacaze, Self-organized arrays of dislocations in thin smectic liquid crystal films. Soft Matter 12, 678–688 (2016)ADSCrossRefGoogle Scholar
  359. 359.
    S.G. Lukishova, A.C. Liapis, H. Zhu, E. Hebert, K. Kuyk, S. Choudhary, R.W. Boyd, Z. Wang, L.J. Bissell, Plasmonic nanoantennas with liquid crystals for nanocrystal fluorescence enhancement and polarization selectivity of classical and quantum light sources. Mol. Cryst. Liq. Cryst. 657, 173–183 (2017)CrossRefGoogle Scholar
  360. 360.
    L. Jiang, H. Mundoor, Q. Liu, I.I. Smalyukh, Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons. ACS Nano 10, 7064–7072 (2016)CrossRefGoogle Scholar
  361. 361.
    R.N. Patel, T. Schröder, N. Wan, L. Li, S.L. Mouradian, E.H. Chen, D.R. Englund, Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber. Light: Sci. Appl. 5, e16032 (2016)ADSCrossRefGoogle Scholar
  362. 362.
    E. Ampem-Lassen, D.A. Simpson, B.C. Gibson, S. Trpkovski, F.M. Hossain, S.T. Huntington, K. Ganesan, L.C.L. Hollenberg, S. Prawer, Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287–11293 (2009)ADSCrossRefGoogle Scholar
  363. 363.
    C. Santori, D. Fattal, J. VuCkovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)ADSCrossRefGoogle Scholar
  364. 364.
    T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn, Quantum beat of two single photons. Phys. Rev. Lett. 93, 70503 (2004)ADSCrossRefGoogle Scholar
  365. 365.
    A. Kiraz, M. Ehrl, Th Hellerer, Ö.E. Müstecaplıoğlu, C. Bräuchle, A. Zumbusch, Indistinguishable photons from a single molecule. Phys. Rev. Lett. 94, 223602 (2005)ADSCrossRefGoogle Scholar
  366. 366.
    R. Lettow, Y.L.A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, V. Sandoghdar, Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010)ADSCrossRefGoogle Scholar
  367. 367.
    E.B. Flagg, A. Muller, S.V. Polyakov, A. Ling, A. Migdall, G.S. Solomon, Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010)ADSCrossRefGoogle Scholar
  368. 368.
    R.B. Patel, A.J. Bennett, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010)ADSCrossRefGoogle Scholar
  369. 369.
    A. Sipahigil, M.L. Goldman, E. Togan, Y. Chu, M. Markham, D.J. Twitchen, A.S. Zibrov, A. Kubanek, M.D. Lukin, Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 143601 (2012)ADSCrossRefGoogle Scholar
  370. 370.
    A.V. Kuhlmann, J.H. Prechtel, J. Houel, A. Ludwig, D. Reuter, A.D. Wieck, R.J. Warburton, Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)ADSCrossRefGoogle Scholar
  371. 371.
    C. Matthiesen, A.N. Vamivakas, M. Atatüre, Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 93602 (2012)ADSCrossRefGoogle Scholar
  372. 372.
    C. Matthiesen, M. Geller, C.H.H. Schulte, C. Le Gall, J. Hansom, Z. Li, M. Hugues, E. Clarke, M. Atatüre, Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nat. Commun. 4, 1600 (2013)CrossRefGoogle Scholar
  373. 373.
    O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)ADSCrossRefGoogle Scholar
  374. 374.
    X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 20401 (2016)ADSCrossRefGoogle Scholar
  375. 375.
    H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016)ADSCrossRefGoogle Scholar
  376. 376.
    W.T. Buttler, R.J. Hughes, P.G. Kwiat, S.K. Lamoreaux, G.G. Luther, G.L. Morgan, J.E. Nordholt, C.G. Peterson, C.M. Simmons, Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283–3286 (1998)ADSzbMATHCrossRefGoogle Scholar
  377. 377.
    X. Shan, X. Sun, J. Luo, Z. Tan, M. Zhan, Free-space quantum key distribution with Rb vapor filters. Appl. Phys. Lett. 89, 191121 (2006)ADSCrossRefGoogle Scholar
  378. 378.
    D.N. Wolf, Ultra-bright single photon source. PSI—Physical Sciences Inc. http://www.psicorp.com/content/ultra-bright-single-photon-source
  379. 379.
    N. Sangouard, H. Zbinden, What are single photons good for? J. Mod. Opt. 59, 1458–1464 (2012)ADSCrossRefGoogle Scholar
  380. 380.
    A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  381. 381.
    N. Gisin, S. Pironio, N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 70501 (2010)ADSCrossRefGoogle Scholar
  382. 382.
    J. Minář, H. de Riedmatten, N. Sangouard, Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A. 85, 32313 (2012)ADSCrossRefGoogle Scholar
  383. 383.
    C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)ADSCrossRefGoogle Scholar
  384. 384.
    T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gérard, P. Senellart, A. Auffèves, Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015)ADSCrossRefGoogle Scholar
  385. 385.
    S. Wein, N. Lauk, R. Ghobadi, C. Simon, Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities. Phys. Rev. B 97, 205418 (2018)Google Scholar
  386. 386.
    B. Gurlek, V. Sandoghdar, D. Martín-Cano, Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photonics 5, 456–461 (2018)CrossRefGoogle Scholar
  387. 387.
    H. Siampour, S. Kumar, S.I. Bozhevolnyi, Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission. Nanoscale 9, 17902–17908 (2017)CrossRefGoogle Scholar
  388. 388.
    A. Singh, J.T. Hugall, G. Calbris, N.F. van Hulst, Fiber-based optical nanoantennas for single-molecule imaging and sensing. J. Light. Technol. 33, 2371–2377 (2015)ADSCrossRefGoogle Scholar
  389. 389.
    X. Wang, G. Venugopal, J. Zeng, Y. Chen, D.H. Lee, N.M. Litchinitser, A.N. Cartwright, Optical fiber metamagnetics. Opt. Express 19, 19813–19821 (2011)ADSCrossRefGoogle Scholar
  390. 390.
    M.A. Noginov, L. Gu, J. Livenere, G. Zhu, A.K. Pradhan, R. Mundle, M. Bahoura, Y.A. Barnakov, V.A. Podolskiy, Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 21101 (2011)CrossRefGoogle Scholar
  391. 391.
    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-Telecom Quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)ADSCrossRefGoogle Scholar
  392. 392.
    M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010)ADSCrossRefGoogle Scholar
  393. 393.
    S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)ADSCrossRefGoogle Scholar
  394. 394.
    J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, S. Ramachandran, Intermodal nonlinear mixing with Bessel beams in optical fiber. Optica 2, 14–17 (2015)CrossRefGoogle Scholar
  395. 395.
    G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, S. Franke-Arnold, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)ADSCrossRefGoogle Scholar
  396. 396.
    J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)ADSCrossRefGoogle Scholar
  397. 397.
    S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, A. Zeilinger, Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)ADSCrossRefGoogle Scholar
  398. 398.
    M. Mirhosseini, O.S. Magaña-Loaiza, M.N. O’Sullivan, B. Rodenburg, M. Malik, M.P.J. Lavery, M.J. Padgett, D.J. Gauthier, R.W. Boyd, High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 33033 (2015)MathSciNetCrossRefGoogle Scholar
  399. 399.
    H. Choi, D. Zhu, Y. Yoon, D. Englund, Indistinguishable single-photon sources with dissipative emitter coupled to cascaded cavities. arXiv: 1809.01645, September 2018Google Scholar
  400. 400.
    T. Iwasaki, Y. Miyamoto, T. Taniguchi, P. Siyushev, M.H. Metsch, F. Jelezko, M. Hatano, Tin-vacancy quantum emitters in diamond, Phys. Rev. Lett. 119, 253601 (2017)Google Scholar
  401. 401.
    S.I. Bogdanov, M.Y. Shalaginov, A.S. Lagutchev, C.-C. Chiang, D. Shah, A.S. Baburin, I.A. Ryzhikov, I.A. Rodionov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas, Nano Lett. 18, 4837–4844 (2018)ADSCrossRefGoogle Scholar
  402. 402.
    S. Bogdanov, M.Y. Shalaginov, A. Boltasseva, V.M. Shalaev, Material platforms for integrated quantum photonics. Opt. Mater. Express 7, 111–132 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute of Optics, University of RochesterRochesterUSA
  2. 2.Air Force Research LaboratoryMaterials and Manufacturing DirectorateWPAFBUSA

Personalised recommendations