Nonlinear Interactions and Non-classical Light

  • Dmitry V. StrekalovEmail author
  • Gerd Leuchs
Part of the Springer Series in Optical Sciences book series (SSOS, volume 217)


The term non-classical concerns light whose properties cannot be explained by classical electrodynamics and which requires invoking quantum principles to be understood. Its existence is a direct consequence of field quantization; its study is a source of our understanding of many quantum phenomena. Non-classical light also has properties that may be of technological significance. We start this chapter by discussing the definition of non-classical light and basic examples. Then some of the most prominent applications of non-classical light are reviewed. After that, as the principal part of our discourse, we review the most common sources of non-classical light. We will find them surprisingly diverse, including physical systems of various sizes and complexity, ranging from single atoms to optical crystals and to semiconductor lasers. Putting all these dissimilar optical devices in the common perspective we attempt to establish a trend in the field and to foresee the new cross-disciplinary approaches and techniques of generating non-classical light.



We thank Drs. M. Raymer and M. Gurioli for valuable comments. D. V. S. would like to thank the Alexander von Humboldt Foundation for sponsoring his collaboration with the Max Plank Institute for the physics of light in Erlangen.


  1. 1.
    R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)Google Scholar
  2. 2.
    D.N. Klyshko, Basic quantum mechanical concepts from the operational viewpoint. Phys.-Uspekhi 41, 885–922 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451–454 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    H. Paul, Photon antibunching. Rev. Mod. Phys. 54, 1061–1102 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    G. Leuchs, Photon statistics, antibunching and squeezed states, in Frontiers of Nonequilibrium Statistical Physics, ed. by G.T. Moore, M.O. Scully (Springer, US, 1986)Google Scholar
  6. 6.
    D.N. Klyshko, The nonclassical light. Phys.-Uspekhi 39, 573–596 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Klyshko, Quantum optics: quantum, classical, and metaphysical aspects. Phys.-Uspekhi 37, 1097–1123 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Bell, On the einstein podolsky Rosen paradox. Physics 1, 195–200 (1964)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variables theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    J.F. Clauser, M.A. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    J.F. Clauser, A. Shimony, Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)ADSCrossRefGoogle Scholar
  13. 13.
    N.J. Cerf, C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194–5197 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)Google Scholar
  15. 15.
    W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Verlag Berlin GmbH, Berlin, 2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Hillery, Total noise and nonclassical states. Phys. Rev. A 39, 2994–3002 (1989)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C.T. Lee, Higher-order criteria for nonclassical effects in photon statistics. Phys. Rev. A 41, 1721–1723 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    D.N. Klyshko, Observable signs of nonclassical light. Phys. Lett. A 213, 7 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    B. Yurke, D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    B. Vlastakis, G. Kirchmair, Z. Leghtas, S.E. Nigg, L. Frunzio, S.M. Girvin, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf, Deterministically encoding quantum information using 100-photon schrödinger cat states. Science 342, 607–610 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    P.G. Kwiat, H. Weinfurter, Embedded bell-state analysis. Phys. Rev. A 58, R2623–R2626 (1998)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Dowling, Quantum optical metrology—the lowdown on hing-noon states. Contemp. Phys. 49, 125–143 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    I. Afek, O. Ambar, Y. Silberberg, High-noon states by mixing quantum and classical light. Science 328, 879–881 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Y. Zhang, T. Furuta, R. Okubo, K. Takahashi, T. Hirano, Experimental generation of broadband quadrature entanglement using laser pulses. Phys. Rev. A 76, 012314 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    K.-I. Yoshino, T. Aoki, A. Furusawa, Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett. 90, 041111 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    U.L. Andersen, G. Leuchs, C. Silberhorn, Continuous-variable quantum information processing. Las. Phot. Rev. 4, 337–354 (2010)CrossRefGoogle Scholar
  28. 28.
    W.P. Bowen, N. Treps, B.C. Buchler, R. Schnabel, T.C. Ralph, H.-A. Bachor, T. Symul, P.K. Lam, Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    M.V. Chekhova, G. Leuchs, M. Żukowski, Bright squeezed vacuum: entanglement of macroscopic light beams. Opt. Commun. 337, 27–43 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Collett, D.F. Walls, Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887–2892 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    M.D. Reid, P.D. Drummond, Quantum correlations of phase in nondegenerate parametric oscillation. Phys. Rev. Lett. 60, 2731–2733 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    C. Fabre, E. Giacobino, A. Heidmann, S. Reynaud, Noise characteristics of a non-degenerate optical parametric oscillator—application to quantum noise reduction. J. Phys. 50, 1209–1225 (1989)CrossRefGoogle Scholar
  33. 33.
    J.U. Fürst, D.V. Strekalov, D. Elser, A. Aiello, U.L. Andersen, C. Marquardt, G. Leuchs, Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett. 106, 113901 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    B. Yurke, S.L. McCall, J.R. Klauder, Su(2) and su(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    R.A. Campos, B.E.A. Saleh, M.C. Teich, Quantum-mechanical lossless beam splitter: Su(2) symmetry and photon statistics. Phys. Rev. A 40, 1371–1384 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    K.Y. Spasibko, F. Töppel, T.S. Iskhakov, M. Stobiska, M.V. Chekhova, G. Leuchs, Interference of macroscopic beams on a beam splitter: phase uncertainty converted into photon-number uncertainty. New J. Phys. 16, 013025 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, A. Zeilinger, Experimental test of quantum nonlocality in three-photon greenberger-horne-zeilinger entanglement. Nature 403, 515–519 (2000)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    W. Dur, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter, Experimental realization of a three-qubit entangled w state. Phys. Rev. Lett. 92, 077901 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    J. Wen, S. Du, M. Xiao, Improving spatial resolution in quantum imaging beyond the rayleigh diffraction limit using multiphoton w entangled states. Phys. Lett. A 374, 3908–3911 (2010)ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    H.J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    M. Hein, J. Eisert, H.J. Briegel, Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    J.A. Smolin, Four-party unlockable bound entangled state. Phys. Rev. A 63, 032306 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    H. Bechmann-Pasquinucci, W. Tittel, Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    S.P. Walborn, D.S. Lemelle, M.P. Almeida, P.H.S. Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    P.B. Dixon, G.A. Howland, J. Schneeloch, J.C. Howell, Quantum mutual information capacity for high-dimensional entangled states. Phys. Rev. Lett. 108, 143603 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    W. Wasilewski, A.I. Lvovsky, K. Banaszek, C. Radzewicz, Pulsed squeezed light: simultaneous squeezing of multiple modes. Phys. Rev. A 73, 063819 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    H.-P. Lo, C.-M. Li, A. Yabushita, Y.-N. Chen, C.-W. Luo, T. Kobayashi, Experimental violation of bell inequalities for multi-dimensional systems. Sci. Rep. 6, 22088 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    A.C. Dada, J. Leach, G.S. Buller, M.J. Padgett, E. Andersson, Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys. 7, 677–680 (2011)CrossRefGoogle Scholar
  52. 52.
    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, A. Zeilinger, Generation and confirmation of a (\(100 \times 100\))-dimensional entangled quantum system. PNAS 111, 6243–6247 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    B.C. Hiesmayr, M.J.A. de Dood, W. Löffler, Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    M.W. Mitchell, F.A. Beduini, Extreme spin squeezing for photons. New J. Phys. 16, 073027 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    R. Hildebrand, Concurrence revisited. J. Math. Phys. 48, 102108–102108 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    B.Y. Zeldovich, D.N. Klyshko, Statistics of field in parametric luminescence. Sov. Phys. JETP Lett. 9, 40–44 (1969)ADSGoogle Scholar
  61. 61.
    D.C. Burnham, D.L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970)ADSCrossRefGoogle Scholar
  62. 62.
    D.N. Klyshko, Use of two-photon light for absolute calibration of photoelectric detectors. Quantum Electron. 7, 1932–1940 (1980)Google Scholar
  63. 63.
    S.V. Polyakov, A.L. Migdall, High accuracy verification of a correlatedphoton-based method for determining photoncounting detection efficiency. Opt. Express 15, 1390–1407 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    M. Ware, A. Migdall, J. Bienfang, S. Polyakov, Calibrating photon-counting detectors to high accuracy: background and deadtime issues. J. Mod. Opt. 54, 361–372 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    A. Czitrovszky, A. Sergienko, P. Jani, A. Nagy, Measurement of quantum efficiency using correlated photon pairs and a single-detector technique. Metrologia 37, 617–620 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    M.V. Lebedev, A.A. Shchekin, O.V. Misochko, Two-electron pulses of a photomultiplier and two-photon photoeffect. Quantum Electron. 38, 710–723 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    G. Brida, M. Genovese, I. Ruo-Berchera, M. Chekhova, A. Penin, Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study. JOSA B 23, 2185–2193 (2006)ADSCrossRefGoogle Scholar
  68. 68.
    H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel, Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    G. Brida, I.P. Degiovanni, M. Genovese, M.L. Rastello, I. Ruo-Berchera, Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera. Opt. Express 18, 20572–20584 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    D.N. Klyshko, Photons and Nonlinear Optics (Taylor and Francis, New York, NY USA, 1988)Google Scholar
  71. 71.
    D.N. Klyshko, A.N. Penin, The prospects of quantum photometry. Sov. Phys. Uspekhi 30, 716–723 (1987)ADSCrossRefGoogle Scholar
  72. 72.
    M. Xiao, L.-A. Wu, H.J. Kimble, Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987)ADSCrossRefGoogle Scholar
  73. 73.
    P. Grangier, R.E. Slusher, B. Yurke, A. LaPorta, Squeezed-light- enhanced polarization interferometer. Phys. Rev. Lett. 59, 2153–2156 (1987)ADSCrossRefGoogle Scholar
  74. 74.
    T.L.S. Collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)CrossRefGoogle Scholar
  75. 75.
    E.S. Polzik, J. Carri, H.J. Kimble, Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020–3023 (1992)ADSCrossRefGoogle Scholar
  76. 76.
    P.H.S. Ribeiro, C. Schwob, A. Maitre, C. Fabre, Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams. Opt. Lett. 22, 1893–1895 (1997)ADSCrossRefGoogle Scholar
  77. 77.
    M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Biological measurement beyond the quantum limit. Nat. Phot. 7, 229–233 (2013)CrossRefGoogle Scholar
  78. 78.
    J. Gea-Banacloche, Two-photon absorption of nonclassical light. Phys. Rev. Lett. 62, 1603–1606 (1989)ADSCrossRefGoogle Scholar
  79. 79.
    J. Javanainen, P.L. Gould, Linear intensity dependence of a two-photon transition rate. Phys. Rev. A 41, 5088–5091 (1990)ADSCrossRefGoogle Scholar
  80. 80.
    B. Dayan, Theory of two-photon interactions with broadband down-converted light and entangled photons. Phys. Rev. A 76, 043813 (2007)ADSCrossRefGoogle Scholar
  81. 81.
    N.P. Georgiades, E.S. Polzik, K. Edamatsu, H.J. Kimble, A.S. Parkins, Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426–3429 (1995)ADSCrossRefGoogle Scholar
  82. 82.
    B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Two photon absorption and coherent control with broadband down-converted light. Phys. Rev. Lett. 93, 023005 (2004)ADSCrossRefGoogle Scholar
  83. 83.
    F. Boitier, A. Godard, E. Rosencher, C. Fabre, Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nat. Phys. 5, 267–270 (2009)CrossRefGoogle Scholar
  84. 84.
    D.Y. Korystov, S.P. Kulik, A.N. Penin, Rozhdestvenski hooks in two-photon parametric light scattering. JETP Lett. 73, 214–218 (2001)ADSCrossRefGoogle Scholar
  85. 85.
    A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P. Williams, J.P. Dowling, Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)ADSCrossRefGoogle Scholar
  86. 86.
    A. Pe’er, B. Dayan, M. Vucelja, Y. Silberberg, A.A. Friesem, Quantum lithography by coherent control of classical light pulses. Opt. Express 12, 6600–6605 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    E.M. Nagasako, S.J. Bentley, R.W. Boyd, G.S. Agarwal, Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers. Phys. Rev. A 64, 043802 (2001)ADSCrossRefGoogle Scholar
  88. 88.
    B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005)ADSCrossRefGoogle Scholar
  89. 89.
    T.B. Pittman, Y.H. Shih, D.V. Strekalov, A.V. Sergienko, Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995)ADSCrossRefGoogle Scholar
  90. 90.
    M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    N. Treps, N. Grosse, W.P. Bowen, C. Fabre, H.-A. Bachor, P.K. Lam, A quantum laser pointer. Science 301, 940–943 (2003)ADSCrossRefGoogle Scholar
  92. 92.
    R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  93. 93.
    P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    J.F. Clauser, J.P. Dowling, Factoring integers with young’s n-slit interferometer. Phys. Rev. A 53, 4587–4590 (1996)ADSCrossRefGoogle Scholar
  95. 95.
    J.D. Franson, B.C. Jacobs, T.B. Pittman, Quantum computing using single photons and the zeno effect. Phys. Rev. A 70, 062302 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    J.D. Franson, T.B. Pittman, B.C. Jacobs, Zeno logic gates using microcavities. JOSA B 24, 209–213 (2007)ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    B.D. Clader, S.M. Hendrickson, R.M. Camacho, B.C. Jacobs, All-optical microdisk switch using EIT. Opt. Express 21, 6169–6179 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    Y.-P. Huang, J.B. Altepeter, P. Kumar, Interaction-free all-optical switching via the quantum zeno effect. Phys. Rev. A 82, 063826 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Y.-P. Huang, P. Kumar, Interaction-free all-optical switching in chi\(^{(2)}\) microdisks for quantum applications. Opt. Lett. 35, 2376–2378 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    Y.-Z. Sun, Y.-P. Huang, P. Kumar, Photonic nonlinearities via quantum zeno blockade. Phys. Rev. Lett. 110, 223901 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    S.M. Hendrickson, C.N. Weiler, R.M. Camacho, P.T. Rakich, A.I. Young, M.J. Shaw, T.B. Pittman, J.D. Franson, B.C. Jacobs, All-optical-switching demonstration using two-photon absorption and the zeno effect. Phys. Rev. A 87, 23808 (2013)ADSCrossRefGoogle Scholar
  102. 102.
    D.V. Strekalov, A.S. Kowligy, Y.-P. Huang, P. Kumar, Progress towards interaction-free all-optical devices. Phys. Rev. A 89, 063820 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  104. 104.
    T. Aoki, A.S. Parkins, D.J. Alton, C.A. Regal, B. Dayan, E. Ostby, K.J. Vahala, H.J. Kimble, Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)ADSCrossRefGoogle Scholar
  105. 105.
    H.P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, G. Rempe, A single-atom quantum memory. Nature 473, 190–193 (2011)ADSCrossRefGoogle Scholar
  106. 106.
    A. Ourjoumtsev, A. Kubanek, M. Koch, C. Sames, P.W.H. Pinkse, G. Rempe, K. Murr, Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    W. Chen, K.M. Beck, R. Bücker, M. Gullans, M.D. Lukin, H. Tanji-Suzuki, V. Vuletić, All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013)ADSCrossRefGoogle Scholar
  108. 108.
    S. Baur, D. Tiarks, G. Rempe, S. Dürr, Single-photon switch based on rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014)ADSCrossRefGoogle Scholar
  109. 109.
    X. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan, All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014)ADSCrossRefGoogle Scholar
  110. 110.
    T.G. Tiecke, J.D. Thompson, N.P. de Leon, L.R. Liu, V. Vuletić, M.D. Lukin, Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014)ADSCrossRefGoogle Scholar
  111. 111.
    S. Rosenblum, O. Bechler, I. Shomroni, Y. Lovsky, G. Guendelman, B. Dayan, Extraction of a single photon from an optical pulse. Nat. Phot. 10, 19–22 (2016)CrossRefGoogle Scholar
  112. 112.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)ADSCrossRefGoogle Scholar
  113. 113.
    P.-B. Li, S.-Y. Gao, F.-L. Li, Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator. Phys. Rev. A 83, 054306 (2011)ADSCrossRefGoogle Scholar
  114. 114.
    Q. Chen, W.L. Yang, M. Feng, Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator. Eur. Phys. J. D 66, 238 (2012)ADSCrossRefGoogle Scholar
  115. 115.
    J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)ADSCrossRefGoogle Scholar
  116. 116.
    J. Beugnon, M.P.A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, P. Grangier, Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006)ADSCrossRefGoogle Scholar
  117. 117.
    P. Maunz, D.L. Moehring, S. Olmschenk, K.C. Younge, D.N. Matsukevich, C. Monroe, Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007)CrossRefGoogle Scholar
  118. 118.
    V. Leong, S. Kosen, B. Srivathsan, G.K. Gulati, A. Cerè, C. Kurtsiefer, Hong-ou-mandel interference between triggered and heralded single photons from separate atomic systems. Phys. Rev. A 91, 063829 (2015)ADSCrossRefGoogle Scholar
  119. 119.
    X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, J.-W. Pan, Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008)ADSCrossRefGoogle Scholar
  120. 120.
    J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett. 110 (2013)Google Scholar
  121. 121.
    G. Schunk, U. Vogl, D.V. Strekalov, M. Förtsch, F. Sedlmeir, H.G.L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, C. Marquardt, Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source. Optica 2, 773–778 (2015)CrossRefGoogle Scholar
  122. 122.
    A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, J. Eschner, Telecom-heralded single-photon absorption by a single atom. Phys. Rev. A 92, 063827 (2015)ADSCrossRefGoogle Scholar
  123. 123.
    G. Schunk, U. Vogl, F. Sedlmeir, D.V. Strekalov, A. Otterpohl, V. Averchenko, H.G.L. Schwefel, G. Leuchs, C. Marquardt, Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions. J. Mod. Opt. 63, 2058–2073 (2016)ADSCrossRefGoogle Scholar
  124. 124.
    M. Förtsch, G. Schunk, J.U. Fürst, D. Strekalov, T. Gerrits, M.J. Stevens, F. Sedlmeir, H.G.L. Schwefel, S.W. Nam, G. Leuchs, C. Marquardt, Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source. Phys. Rev. A 91, 023812 (2015)ADSCrossRefGoogle Scholar
  125. 125.
    K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New J. Phys. 17, 073039 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRefGoogle Scholar
  127. 127.
    Y.I. Bogdanov, M.V. Chekhova, L.A. Krivitsky, S.P. Kulik, A.N. Penin, A.A. Zhukov, L.C. Kwek, C.H. Oh, M.K. Tey, Statistical reconstruction of qutrits. Phys. Rev. A 70, 042303 (2004)ADSCrossRefGoogle Scholar
  128. 128.
    B.P. Lanyon, T.J. Weinhold, N.K. Langford, J.L. O’Brien, K.J. Resch, A. Gilchrist, A.G. White, Manipulating biphotonic qutrits. Phys. Rev. Lett. 100, 060504 (2008)ADSCrossRefGoogle Scholar
  129. 129.
    Y.I. Bogdanov, E.V. Moreva, G.A. Maslennikov, R.F. Galeev, S.S. Straupe, S.P. Kulik, Polarization states of four-dimensional systems based on biphotons. Phys. Rev. A 73, 063810 (2006)ADSCrossRefGoogle Scholar
  130. 130.
    M.-X. Luo, Y. Deng, H.-R. Li, S.-Y. Ma, Photonic ququart logic assisted by the cavity-qed system. Sci. Rep. 5, 13255 (2015)ADSCrossRefGoogle Scholar
  131. 131.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSzbMATHCrossRefGoogle Scholar
  132. 132.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol. 175 (1984), p. 8Google Scholar
  133. 133.
    S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    C. Crèpeau, J. Kilian, Achieving oblivious transfer using weakened security assumptions, in 29th Annual Symposium on Foundations of Computer Science (1988), pp. 42–52Google Scholar
  135. 135.
    T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel, A. Kent, N. Gisin, S. Wehner, H. Zbinden, Experimental bit commitment based on quantum communication and special relativity. Phys. Rev. Lett. 111, 180504 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Marquardt, G. Leuchs, P. Wallden, E. Andersson, N. Korolkova, Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117, 100503 (2016)ADSCrossRefGoogle Scholar
  137. 137.
    S.J. Freedman, J.F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)ADSCrossRefGoogle Scholar
  138. 138.
    T. Brannan, Z. Qin, A. MacRae, A.I. Lvovsky, Generation and tomography of arbitrary optical qubits using transient collective atomic excitations. Opt. Lett. 39, 5447–5450 (2014)ADSCrossRefGoogle Scholar
  139. 139.
    R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valleys, Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985)ADSCrossRefGoogle Scholar
  140. 140.
    A. Lambrecht, T. Coudreau, A.M. Steinberg, E. Giacobino, Squeezing with cold atoms. Europhys. Lett. 36, 93–98 (1996)ADSCrossRefGoogle Scholar
  141. 141.
    C.F. McCormick, V. Boyer, E. Arimondo, P.D. Lett, Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 32, 178–180 (2007)ADSCrossRefGoogle Scholar
  142. 142.
    N. Corzo, A.M. Marino, K.M. Jones, P.D. Lett, Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor. Opt. Express 19, 21358–21369 (2011)ADSCrossRefGoogle Scholar
  143. 143.
    V. Boyer, A.M. Marino, P.D. Lett, Generation of spatially broadband twin beams for quantum imaging. Phys. Rev. Lett. 100, 143601 (2008)ADSCrossRefGoogle Scholar
  144. 144.
    V. Balić, D.A. Braje, P. Kolchin, G.Y. Yin, S.E. Harris, Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005)ADSCrossRefGoogle Scholar
  145. 145.
    C.W. Chou, S.V. Polyakov, A. Kuzmich, H.J. Kimble, Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004)ADSCrossRefGoogle Scholar
  146. 146.
    S.V. Polyakov, C.W. Chou, D. Felinto, H.J. Kimble, Temporal dynamics of photon pairs generated by an atomic ensemble. Phys. Rev. Lett. 93, 263601 (2004)ADSCrossRefGoogle Scholar
  147. 147.
    M.D. Eisaman, L. Childress, A. André, F. Massou, A.S. Zibrov, M.D. Lukin, Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004)ADSCrossRefGoogle Scholar
  148. 148.
    J.F. Chen, S. Zhang, H. Yan, M.M.T. Loy, G.K.L. Wong, S. Du, Shaping biphoton temporal waveforms with modulated classical fields. Phys. Rev. Lett. 104, 183604 (2010)ADSCrossRefGoogle Scholar
  149. 149.
    A.B. Matsko, I. Novikova, G.R. Welch, D. Budker, D.F. Kimball, S.M. Rochester, Vacuum squeezing in atomic media via self-rotation. Phys. Rev. A 66, 043815 (2002)ADSCrossRefGoogle Scholar
  150. 150.
    S. Barreiro, P. Valente, H. Failache, A. Lezama, Polarization squeezing of light by single passage through an atomic vapor. Phys. Rev. A 84, 033851 (2011)ADSCrossRefGoogle Scholar
  151. 151.
    J. Ries, B. Brezger, A.I. Lvovsky, Experimental vacuum squeezing in rubidium vapor via self-rotation. Phys. Rev. A 68, 025801 (2003)ADSCrossRefGoogle Scholar
  152. 152.
    K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)ADSCrossRefGoogle Scholar
  153. 153.
    B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimble, A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)ADSCrossRefGoogle Scholar
  154. 154.
    C.S. Muñoz, E. del Valle, A.G. Tudela, K. Müller, S. Lichtmannecker, M. Kaniber, C. Tejedor, J.J. Finley, F.P. Laussy, Emitters of n-photon bundles. Nat. Phot. 8, 550–555 (2014)CrossRefGoogle Scholar
  155. 155.
    D.V. Strekalov, A bundle of photons, please. Nat. Phot. 8, 500–501 (2014)CrossRefGoogle Scholar
  156. 156.
    T. Basche, W.E. Moerner, M. Orrit, H. Talon, Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992)ADSCrossRefGoogle Scholar
  157. 157.
    C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999)ADSzbMATHCrossRefGoogle Scholar
  158. 158.
    B. Lounis, W.E. Moerner, Single photons on demand from a singlemolecule at room temperature. Nature 407, 491–493 (2000)ADSCrossRefGoogle Scholar
  159. 159.
    B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)ADSCrossRefGoogle Scholar
  160. 160.
    S. Buckley, K. Rivoire, J. Vučković, Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012)ADSCrossRefGoogle Scholar
  161. 161.
    P. Michler, A. Imamoglu, M.D. Maso, P.J. Carson, G.F. Strouse, S.K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)ADSCrossRefGoogle Scholar
  162. 162.
    S. Bounouar, M. Elouneg-Jamroz, M. d. Hertog, C. Morchutt, E. Bellet-Amalric, R. André, C. Bougerol, Y. Genuist, J.-P. Poizat, S. Tatarenko, K. Kheng, Ultrafast room temperature single-photon source from nanowire-quantum dots. Nano Lett. 12, 2977–2981 (2012)ADSCrossRefGoogle Scholar
  163. 163.
    M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Room-temperature triggered single photon emission from a iii-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014)ADSCrossRefGoogle Scholar
  164. 164.
    A. Högele, C. Galland, M. Winger, A. Imamolu, Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008)ADSCrossRefGoogle Scholar
  165. 165.
    S. Schietinger, T. Schröder, O. Benson, One-by-one coupling of single defect centers in nanodiamonds to high-q modes of an optical microresonator. Nano Lett. 8(11), 3911–3915 (2008)ADSCrossRefGoogle Scholar
  166. 166.
    T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotech. 5, 195–199 (2010)ADSCrossRefGoogle Scholar
  167. 167.
    C.H.H. Schulte, J. Hansom, A.E. Jones, C. Matthiesen, C. Le Gall, M. Atatüre, Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015)ADSCrossRefGoogle Scholar
  168. 168.
    D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007)ADSCrossRefGoogle Scholar
  169. 169.
    S. Strauf, N.G. Stoltz, M.T. Rakher, L.A. Coldren, P.M. Petroff, D. Bouwmeester, High-frequency single-photon source with polarization control. Nat. Phot. 1, 704–708 (2007)CrossRefGoogle Scholar
  170. 170.
    E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)ADSCrossRefGoogle Scholar
  171. 171.
    K. Srinivasan, O. Painter, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 450, 862–865 (2007)ADSCrossRefGoogle Scholar
  172. 172.
    M.N. Makhonin, J.E. Dixon, R.J. Coles, B. Royall, I.J. Luxmoore, E. Clarke, M. Hugues, M.S. Skolnick, A.M. Fox, Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett. 14, 6997–7002 (2014)ADSCrossRefGoogle Scholar
  173. 173.
    N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)ADSCrossRefGoogle Scholar
  174. 174.
    R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006)ADSCrossRefGoogle Scholar
  175. 175.
    T. Kuroda, T. Mano, N. Ha, H. Nakajima, H. Kumano, B. Urbaszek, M. Jo, M. Abbarchi, Y. Sakuma, K. Sakoda, I. Suemune, X. Marie, T. Amand, Symmetric quantum dots as efficient sources of highly entangled photons: Violation of bell’s inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013)ADSCrossRefGoogle Scholar
  176. 176.
    H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G.S. Solomon, G. Weihs, Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013)ADSCrossRefGoogle Scholar
  177. 177.
    N. Dotti, F. Sarti, S. Bietti, A. Azarov, A. Kuznetsov, F. Biccari, A. Vinattieri, S. Sanguinetti, M. Abbarchi, M. Gurioli, Germanium-based quantum emitters towards a time-reordering entanglement scheme with degenerate exciton and biexciton states. Phys. Rev. B 91, 205316 (2015)ADSCrossRefGoogle Scholar
  178. 178.
    R. Trotta, J.S. Wildmann, E. Zallo, O.G. Schmidt, A. Rastelli, Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett. 14, 3439–3444 (2014)ADSCrossRefGoogle Scholar
  179. 179.
    R.J. Young, R.M. Stevenson, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006)ADSCrossRefGoogle Scholar
  180. 180.
    M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Phot. 8, 224–228 (2014)CrossRefGoogle Scholar
  181. 181.
    J.A. Giordmaine, R.C. Miller, Tunable coherent parametric oscillation in \(\text{LiNbO}{_3}\) at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965)ADSCrossRefGoogle Scholar
  182. 182.
    D.N. Klyshko, Scattering of light in a medium with nonlinear polarizability. JETP Lett. 28, 522–526 (1969)Google Scholar
  183. 183.
    D. Strekalov, A.B. Matsko, A.A. Savchenkov, L. Maleki, Relationship between quantum two-photon correlation and classical spectrum of light. Phys. Rev. A 71, 041803 (2005)ADSzbMATHCrossRefGoogle Scholar
  184. 184.
    M.H. Rubin, D.N. Klyshko, Y.H. Shih, A.V. Sergienko, Theory of two-photon entanglement in type-ii optical parametric down-conversion. PRA 50, 5122–5133 (1994)ADSCrossRefGoogle Scholar
  185. 185.
    E. Dauler, G. Jaeger, A. Muller, A. Migdall, A. Sergienko, Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision. J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999)CrossRefGoogle Scholar
  186. 186.
    A. Valencia, M.V. Chekhova, A. Trifonov, Y. Shih, Entangled two-photon wave packet in a dispersive medium. Phys. Rev. Lett. 88, 183601 (2002)ADSCrossRefGoogle Scholar
  187. 187.
    D. Strekalov, A.B. Matsko, A. Savchenkov, L. Maleki, Quantum-correlation metrology with biphotons: where is the limit? J. Mod. Opt. 52, 2233–2243 (2005)ADSzbMATHCrossRefGoogle Scholar
  188. 188.
    M. Scholz, L. Koch, O. Benson, Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 102, 63603 (2009)ADSCrossRefGoogle Scholar
  189. 189.
    C.-S. Chuu, G.Y. Yin, S.E. Harris, A miniature ultrabright source of temporally long, narrowband biphotons. Appl. Phys. Lett. 101, 051108 (2012)ADSCrossRefGoogle Scholar
  190. 190.
    M. Förtsch, J.U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M.V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013)ADSCrossRefGoogle Scholar
  191. 191.
    A.V. Burlakov, M.V. Chekhova, D.N. Klyshko, S.P. Kulik, A.N. Penin, Y.H. Shih, D.V. Strekalov, Interference effects in spontaneous two-photon parametric scattering from two macroscopic regions. Phys. Rev. A 56, 3214–3225 (1997)ADSCrossRefGoogle Scholar
  192. 192.
    T.S. Iskhakov, S. Lemieux, A. Perez, R.W. Boyd, G. Leuchs, M.V. Chekhova, Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum. J. Mod. Opt. 63, 64–70 (2016)ADSCrossRefGoogle Scholar
  193. 193.
    T. Setälä, T. Shirai, A.T. Friberg, Fractional fourier transform in temporal ghost imaging with classical light. Phys. Rev. A 82, 043813 (2010)ADSCrossRefGoogle Scholar
  194. 194.
    D. Sych, V. Averchenko, G. Leuchs, Shaping a single photon without interacting with it. Phys. Rev. A 96, 053847 (2017)Google Scholar
  195. 195.
    V. Averchenko, D. Sych, G. Leuchs, Heralded temporal shaping of single photons enabled by entanglement. Phys. Rev. A 96, 043822 (2017)Google Scholar
  196. 196.
    P.R. Tapster, J.G. Rarity, Photon statistics of pulsed parametric light. J. Mod. Opt. 45, 595–604 (1998)ADSCrossRefGoogle Scholar
  197. 197.
    P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eberhard, Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)ADSCrossRefGoogle Scholar
  198. 198.
    J.T. Barreiro, N.K. Langford, N.A. Peters, P.G. Kwiat, Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)ADSCrossRefGoogle Scholar
  199. 199.
    T.S. Iskhakov, A.M. Pérez, K.Y. Spasibko, M.V. Chekhova, G. Leuchs, Superbunched bright squeezed vacuum state. Opt. Lett. 37, 1919–1921 (2012)ADSCrossRefGoogle Scholar
  200. 200.
    K. Sanaka, K. Kawahara, T. Kuga, New high-efficiency source of photon pairs for engineering quantum entanglement. Phys. Rev. Lett. 86, 5620–5623 (2001)ADSCrossRefGoogle Scholar
  201. 201.
    G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, C. Silberhorn, An optimized photon pair source for quantum circuits. Opt Express 21, 13975–13985 (2013)ADSCrossRefGoogle Scholar
  202. 202.
    A.M. Pérez, K.Y. Spasibko, P.R. Sharapova, O.V. Tikhonova, G. Leuchs, M.V. Chekhova, Giant narrowband twin-beam generation along the pump-energy propagation direction. Nat. Commun. 6, 7707 (2015)ADSCrossRefGoogle Scholar
  203. 203.
    M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Event-ready-detectors bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)ADSCrossRefGoogle Scholar
  204. 204.
    M. Zukowski, A. Zeilinger, H. Weinfurter, Entangling photons radiated by independent pulsed sources. Ann. NY Acad. Sci. 755, 91 (1995)ADSCrossRefGoogle Scholar
  205. 205.
    M. Rådmark, M. Zukowski, M. Bourennane, Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state. Phys. Rev. Lett. 103, 150501 (2009)ADSCrossRefGoogle Scholar
  206. 206.
    O. Aytur, P. Kumar, Squeezed-light generation with a mode-locked q-switched laser and detection by using a matched local oscillator. Opt. Lett. 17, 529–531 (1992)ADSCrossRefGoogle Scholar
  207. 207.
    C. Kim, P. Kumar, Quadrature-squeezed light detection using a self-generated matched local oscillator. Phys. Rev. Lett. 73, 1605–1608 (1994)ADSCrossRefGoogle Scholar
  208. 208.
    K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, F. Kannari, Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a sagnac interferometer. Phys. Rev. A 80, 043832 (2009)ADSCrossRefGoogle Scholar
  209. 209.
    M. Pysher, R. Bloomer, C.M. Kaleva, T.D. Roberts, B. Philip, O. Pfister, Broadband amplitude squeezing in a periodically poled \(\text{KTiOPO}_4\) waveguide. Opt. Lett. 34, 256–258 (2009)ADSCrossRefGoogle Scholar
  210. 210.
    G. Breitenbach, S. Schiller, J. Mlynek, Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997)ADSCrossRefGoogle Scholar
  211. 211.
    M. Lassen, M. Sabuncu, P. Buchhave, U.L. Andersen, Generation of polarization squeezing with periodically poled KTP at 1064 nm. Opt. Expr. 15, 5077–5082 (2007)ADSCrossRefGoogle Scholar
  212. 212.
    A.M. Pérez, T.S. Iskhakov, P. Sharapova, S. Lemieux, O.V. Tikhonova, M.V. Chekhova, G. Leuchs, Bright squeezed-vacuum source with 1.1 spatial mode. Opt. Lett. 39, 2403–2406 (2014)ADSCrossRefGoogle Scholar
  213. 213.
    Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, K. Peng, Cascaded entanglement enhancement. Phys. Rev. A 85, 040305 (2012)ADSCrossRefGoogle Scholar
  214. 214.
    L.-A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986)ADSCrossRefGoogle Scholar
  215. 215.
    S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, A. Furusawa, 7 dB quadrature squeezing at 860 nm with periodically poled \(\text{KTiOPO}{_4}\). Appl. Phys. Lett. 89, 061116 (2006)ADSCrossRefGoogle Scholar
  216. 216.
    Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Observation of \({-}9\) dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 4321–4327 (2007)ADSCrossRefGoogle Scholar
  217. 217.
    G. Hétet, O. Glöckl, K.A. Pilypas, C.C. Harb, B.C. Buchler, H.-A. Bachor, P.K. Lam, Squeezed light for bandwidth-limited atom optics experiments at the rubidium d1 line. J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007)ADSCrossRefGoogle Scholar
  218. 218.
    H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, R. Schnabel, Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008)ADSCrossRefGoogle Scholar
  219. 219.
    T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010)ADSCrossRefGoogle Scholar
  220. 220.
    A. Heidmann, R.J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, G. Camy, Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987)ADSCrossRefGoogle Scholar
  221. 221.
    J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, E. Giacobino, Improvements in the observed intensity correlation of optical parametric oscillator twin beams. Opt. Lett. 16, 1234–1236 (1991)ADSCrossRefGoogle Scholar
  222. 222.
    P.R. Tapster, J.G. Rarity, J.S. Satchell, Use of parametric down-conversion to generate sub-poissonian light. Phys. Rev. A 37, 2963–2967 (1988)ADSCrossRefGoogle Scholar
  223. 223.
    J. Mertz, A. Heidmann, C. Fabre, Generation of sub-poissonian light using active control with twin beams. Phys. Rev. A 44, 3229–3238 (1991)ADSCrossRefGoogle Scholar
  224. 224.
    J. Laurat, T. Coudreau, N. Treps, A. Maître, C. Fabre, Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-poissonian state from twin beams. Phys. Rev. Lett. 91, 213601 (2003)ADSCrossRefGoogle Scholar
  225. 225.
    J. Hald, J.L. Sørensen, C. Schori, E.S. Polzik, Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999)ADSCrossRefGoogle Scholar
  226. 226.
    K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, M. Kozuma, Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008)ADSCrossRefGoogle Scholar
  227. 227.
    M. Scholz, L. Koch, R. Ullmann, O. Benson, Single-mode operation of a high-brightness narrow-band single-photon source. Appl. Phys. Lett. 94, 201105 (2009)ADSCrossRefGoogle Scholar
  228. 228.
    F. Wolfgramm, Y.A. de Icaza Astiz, F.A. Beduini, A. Cerè, M.W. Mitchell, Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011)Google Scholar
  229. 229.
    A.B. Matsko, V.S. Ilchenko, Optical resonators with whispering-gallery modes-part I: basics. J. Sel. Top. Quantum Electron. 12, 3 (2006)CrossRefGoogle Scholar
  230. 230.
    V.S. Ilchenko, A.B. Matsko, Optical resonators with whispering-gallery modes-part II: applications. J. Sel. Top. Quantum Electron. 12, 15–32 (2006)CrossRefGoogle Scholar
  231. 231.
    A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Spherical whispering-gallery-mode microresonators. Las. Phot. Rev. 4, 457–482 (2010)ADSCrossRefGoogle Scholar
  232. 232.
    D.V. Strekalov, C. Marquardt, A.B. Matsko, H.G.L. Schwefel, G. Leuchs, Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18, 123002 (2016)ADSCrossRefGoogle Scholar
  233. 233.
    D.V. Strekalov, A.S. Kowligy, Y.-P. Huang, P. Kumar, Optical sum-frequency generation in a whispering-gallery-mode resonator. New J. Phys. 16, 053025 (2014)ADSCrossRefGoogle Scholar
  234. 234.
    A.A. Savchenkov, A.B. Matsko, M. Mohageg, D.V. Strekalov, L. Maleki, Parametric oscillations in a whispering gallery resonator. Opt. Lett. 32, 157–159 (2007)ADSCrossRefGoogle Scholar
  235. 235.
    J.U. Fürst, D.V. Strekalov, D. Elser, A. Aiello, U.L. Andersen, C. Marquardt, G. Leuchs, Low-threshold optical parametric oscillations in a whispering gallery mode resonator. Phys. Rev. Lett. 105, 263904 (2010)ADSCrossRefGoogle Scholar
  236. 236.
    T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, I. Breunig, Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 106, 143903 (2011)ADSCrossRefGoogle Scholar
  237. 237.
    T. Beckmann, K. Buse, I. Breunig, Optimizing pump threshold and conversion efficiency of whispering gallery optical parametric oscillators by controlled coupling. Opt. Lett. 37, 5250–5252 (2012)ADSCrossRefGoogle Scholar
  238. 238.
    C.S. Werner, T. Beckmann, K. Buse, I. Breunig, Blue-pumped whispering gallery optical parametric oscillator. Opt. Lett. 37, 4224–4226 (2012)ADSCrossRefGoogle Scholar
  239. 239.
    C.S. Werner, K. Buse, I. Breunig, Continuous-wave whispering-gallery optical parametric oscillator for high-resolution spectroscopy. Opt. Lett. 40, 772–775 (2015)ADSCrossRefGoogle Scholar
  240. 240.
    M. Förtsch, T. Gerrits, M.J. Stevens, D. Strekalov, G. Schunk, J.U. Fürst, U. Vogl, F. Sedlmeir, H.G.L. Schwefel, G. Leuchs, S.W. Nam, C. Marquardt, Near-infrared single-photon spectroscopy of a whispering gallery mode resonator using energy-resolving transition edge sensors. J. Opt. 17, 065501 (2015)ADSCrossRefGoogle Scholar
  241. 241.
    A. Sizmann, R.J. Horowitz, G. Wagner, G. Leuchs, Observation of amplitude squeezing of the up-converted mode in second harmonic generation. Opt. Commun. 80, 138–142 (1990)ADSCrossRefGoogle Scholar
  242. 242.
    P. Kurz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Squeezing by second-harmonic generation in a monolithic resonator. Appl. Phys. B 55, 216–225 (1992)ADSCrossRefGoogle Scholar
  243. 243.
    P.D. Drummond, K.J. McNeil, D.F. Walls, Non-equilibrium transitions in sub/second harmonic generation II: quantum theory. Opt. Acta 28, 211–225 (1981)CrossRefGoogle Scholar
  244. 244.
    S.F. Pereira, M. Xiao, H.J. Kimble, J.L. Hall, Generation of squeezed light by intracavity frequency doubling. Phys. Rev. A 38, 4931 (1988)ADSCrossRefGoogle Scholar
  245. 245.
    B. Hage, A. Samblowski, R. Schnabel, Towards einstein-podolsky-rosen quantum channel multiplexing. Phys. Rev. A 81, 062301 (2010)ADSMathSciNetCrossRefGoogle Scholar
  246. 246.
    M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, O. Pfister, Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011)ADSCrossRefGoogle Scholar
  247. 247.
    A. Brieussel, Y. Shen, G. Campbell, G. Guccione, J. Janousek, B. Hage, B.C. Buchler, N. Treps, C. Fabre, F.Z. Fang, X.Y. Li, T. Symul, P.K. Lam, Squeezed light from a diamond-turned monolithic cavity. Opt. Express 24, 4042 (2016)ADSCrossRefGoogle Scholar
  248. 248.
    C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, 2005)Google Scholar
  249. 249.
    R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)ADSCrossRefGoogle Scholar
  250. 250.
    M. Kitagawa, Y. Yamamoto, Number-phase minimum-uncertainty state with reduced number uncertainty in a kerr nonlinear interferometer. Phys. Rev. A 34, 3974–3988 (1986)ADSCrossRefGoogle Scholar
  251. 251.
    R.M. Shelby, M.D. Levenson, S.H. Perlmutter, R.G. DeVoe, D.F. Walls, Broad-band parametric deamplification of quantum noise in an optical fiber. Phys. Rev. Lett. 57, 691–694 (1986)ADSCrossRefGoogle Scholar
  252. 252.
    K. Bergman, H.A. Haus, Squeezing in fibers with optical pulses. Opt. Lett. 16, 663–665 (1991)ADSCrossRefGoogle Scholar
  253. 253.
    M. Rosenbluh, R.M. Shelby, Squeezed optical solitons. Phys. Rev. Lett. 66, 153–156 (1991)ADSCrossRefGoogle Scholar
  254. 254.
    S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, G. Leuchs, Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer. Phys. Rev. Lett. 81, 2446–2449 (1998)ADSCrossRefGoogle Scholar
  255. 255.
    D. Krylov, K. Bergman, Amplitude-squeezed solitons from an asymmetric fiber interferometer. Opt. Lett. 23, 1390–1392 (1998)ADSCrossRefGoogle Scholar
  256. 256.
    S.R. Friberg, S. Machida, M.J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing. Phys. Rev. Lett. 77, 3775–3778 (1996)ADSCrossRefGoogle Scholar
  257. 257.
    S. Spälter, M. Burk, U. Strößner, A. Sizmann, G. Leuchs, Propagation of quantum properties of subpicosecond solitons in a fiber. Opt. Express 2, 77–83 (1998)ADSCrossRefGoogle Scholar
  258. 258.
    C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer, Subcycle quantum electrodynamics. Nature 541, 376–379 (2017)ADSCrossRefGoogle Scholar
  259. 259.
    A.S. Moskalenko, C. Riek, D.V. Seletskiy, G. Burkard, A. Leitenstorfer, Paraxial theory of direct electro-optic sampling of the quantum vacuum. Phys. Rev. Lett. 115, 263601 (2015)ADSCrossRefGoogle Scholar
  260. 260.
    C. Riek, D.V. Seletskiy, A.S. Moskalenko, J.F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer, Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  261. 261.
    D. Levandovsky, M. Vasilyev, P. Kumar, Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier. Opt. Lett. 24, 984–986 (1999)ADSCrossRefGoogle Scholar
  262. 262.
    J. Heersink, V. Josse, G. Leuchs, U.L. Andersen, Efficient polarization squeezing in optical fibers. Opt. Lett. 30, 1192–1194 (2005)ADSCrossRefGoogle Scholar
  263. 263.
    R. Dong, J. Heersink, J.F. Corney, P.D. Drummond, U.L. Andersen, G. Leuchs, Experimental evidence for raman-induced limits to efficient squeezing in optical fibers. Opt. Lett. 33, 116–118 (2008)ADSCrossRefGoogle Scholar
  264. 264.
    M. Margalit, C.X. Xu, E.P. Ippen, H.A. Haus, Cross phase modulation squeezing in optical fibers. Opt. Express 2, 72–76 (1998)ADSCrossRefGoogle Scholar
  265. 265.
    K. Hirosawa, H. Furumochi, A. Tada, F. Kannari, M. Takeoka, M. Sasaki, Photon number squeezing of ultrabroadband laser pulses generated by microstructure fibers. Phys. Rev. Lett. 94, 203601 (2005)ADSCrossRefGoogle Scholar
  266. 266.
    J. Milanovic, M. Lassen, U.L. Andersen, G. Leuchs, A novel method for polarization squeezing with photonic crystal fibers. Opt. Express 18, 1521–1527 (2010)ADSCrossRefGoogle Scholar
  267. 267.
    J.G. Rarity, J. Fulconis, J. Duligall, W.J. Wadsworth, P.S.J. Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534–544 (2005)ADSCrossRefGoogle Scholar
  268. 268.
    J. Fan, A. Migdall, A broadband high spectral brightness fiberbased two-photon source. Opt. Express 15, 2915–2920 (2007)ADSCrossRefGoogle Scholar
  269. 269.
    J. Nold, P. Hölzer, N.Y. Joly, G.K.L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, P.S.J. Russell, Pressure-controlled phase matching to third harmonic in ar-filled hollow-core photonic crystal fiber. Opt. Lett. 35, 2922–2924 (2010)ADSCrossRefGoogle Scholar
  270. 270.
    M.A. Finger, T.S. Iskhakov, N.Y. Joly, M.V. Chekhova, P.S.J. Russell, Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys. Rev. Lett. 115, 143602 (2015)ADSCrossRefGoogle Scholar
  271. 271.
    U. Vogl, N.Y. Joly, P.S.J. Russell, C. Marquardt, G. Leuchs, Squeezed light and self-induced transparency in mercury-filled hollow core photonic crystal fibers (2015)Google Scholar
  272. 272.
    T.D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, F. Benabid, Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications. J. Lightwave Tech. 31, 2752–2755 (2013)ADSCrossRefGoogle Scholar
  273. 273.
    Y.K. Chembo, D.V. Strekalov, N. Yu, Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett. 104, 103902 (2010)ADSCrossRefGoogle Scholar
  274. 274.
    P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007)ADSCrossRefGoogle Scholar
  275. 275.
    W. Liang, A.A. Savchenkov, Z. Xie, J.F. McMillan, J. Burkhart, V.S. Ilchenko, C.W. Wong, A.B. Matsko, L. Maleki, Miniature multioctave light source based on a monolithic microcavity. Optica 2, 40 (2015)CrossRefGoogle Scholar
  276. 276.
    S. Clemmen, K.P. Huy, W. Bogaerts, R.G. Baets, P. Emplit, S. Massar, Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17(19), 16558–16570 (2009)ADSCrossRefGoogle Scholar
  277. 277.
    S. Azzini, D. Grassani, M.J. Strain, M. Sorel, L.G. Helt, J.E. Sipe, M. Liscidini, M. Galli, D. Bajoni, Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20(21), 23100–23107 (2012)ADSCrossRefGoogle Scholar
  278. 278.
    E. Engin, D. Bonneau, C.M. Natarajan, A.S. Clark, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J.L. O’Brien, M.G. Thompson, Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21(23), 27826 (2013)ADSCrossRefGoogle Scholar
  279. 279.
    Y. Guo, W. Zhang, S. Dong, Y. Huang, J. Peng, Telecom-band degenerate-frequency photon pair generation in silicon microring cavities. Opt. Lett. 39(8), 2526–2529 (2014)ADSCrossRefGoogle Scholar
  280. 280.
    D. Grassani, S. Azzini, M. Liscidini, M. Galli, M.J. Strain, M. Sorel, J.E. Sipe, D. Bajoni, Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2(2), 88–94 (2015)CrossRefGoogle Scholar
  281. 281.
    R. Wakabayashi, M. Fujiwara, K.-I. Yoshino, Y. Nambu, M. Sasaki, T. Aoki, Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 23(2), 1103 (2015)ADSCrossRefGoogle Scholar
  282. 282.
    J. Suo, S. Dong, W. Zhang, Y. Huang, J. Peng, Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity. Opt. Express 23(4), 3985–3995 (2015)ADSCrossRefGoogle Scholar
  283. 283.
    A. Dutt, K. Luke, S. Manipatruni, A.L. Gaeta, P. Nussenzveig, M. Lipson, On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015)ADSCrossRefGoogle Scholar
  284. 284.
    U.B. Hoff, B.M. Nielsen, U.L. Andersen, Integrated source of broadband quadrature squeezed light. Opt. Express 23, 12013–12036 (2015)ADSCrossRefGoogle Scholar
  285. 285.
    T.P. Purdy, P.-L. Yu, R.W. Peterson, N.S. Kampel, C.A. Regal, Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013)Google Scholar
  286. 286.
    A.H. Safavi-Naeini, S. Gröblacher, J.T. Hill, J. Chan, M. Aspelmeyer, O. Painter, Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013)ADSCrossRefGoogle Scholar
  287. 287.
    M.C. Teich, B.E.A. Saleh, Observation of sub-poisson Franck-hertz light at 253.7 nm. JOSA B 2, 275–282 (1985)ADSCrossRefGoogle Scholar
  288. 288.
    W. Schottky, E. Spehnke, Raumladungsschwächung des schroteffekts. Wiss. Veröff. Siemens-Werke 16, 1–18 (1937)Google Scholar
  289. 289.
    Y. Yamamoto, S. Machida, High-impedance suppression of pump fluctuation and amplitude squeezing. Phys. Rev. A 35, 5114–5130 (1987)ADSCrossRefGoogle Scholar
  290. 290.
    S. Machida, Y. Yamamoto, Y. Itaya, Observation of amplitude squeezing in a constant-current- driven semiconductor laser. Phys. Rev. Lett. 58, 1000–1003 (1987)ADSCrossRefGoogle Scholar
  291. 291.
    S. Machida, Y. Yamamoto, Ultrabroadband amplitude squeezing in a semiconductor laser. Phys. Rev. Lett. 60, 792–794 (1988)ADSCrossRefGoogle Scholar
  292. 292.
    W.H. Richardson, S. Machida, Y. Yamamoto, Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser. Phys. Rev. Lett. 66, 2867–2870 (1991)ADSCrossRefGoogle Scholar
  293. 293.
    F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.P. Poizat, J.-F. Roch, P. Grangier, Squeezing and intermode correlations in laser diodes. Phys. Rev. Lett. 75, 4606–4609 (1995)ADSCrossRefGoogle Scholar
  294. 294.
    I. Maurin, I. Protsenko, J.-P. Hermier, A. Bramati, P. Grangier, E. Giacobino, Light intensity-voltage correlations and leakage-current excess noise in a single-mode semiconductor laser. Phys. Rev. A 72, 033823 (2005)ADSCrossRefGoogle Scholar
  295. 295.
    H. Wang, M.J. Freeman, D.G. Steel, Squeezed light from injection-locked quantum well lasers. Phys. Rev. Lett. 71, 3951–3954 (1993)ADSCrossRefGoogle Scholar
  296. 296.
    M.J. Freeman, H. Wang, D.G. Steel, R. Craig, D.R. Scifres, Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser. Opt. Lett. 18, 2141–2143 (1993)ADSCrossRefGoogle Scholar
  297. 297.
    F. Wolfl, R.G. Ispasoiu, J.F. Ryan, A.M. Fox, Photon-number squeezing in a free-running quantum-well laser operating at 980 nm. J. Opt. B: Quantum Semiclass. Opt. 4, 129–133 (2002)ADSCrossRefGoogle Scholar
  298. 298.
    M. Uemukai, S. Nozu, T. Suhara, High-efficiency InGaAs QW distributed bragg reflector laser with curved grating for squeezed light generation. J. Sel. Top. Quantum Electron. 11, 1143–1147 (2005)CrossRefGoogle Scholar
  299. 299.
    Y. Yamamoto, N. Imoto, S. Machida, Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback. Phys. Rev. A 33, 3243–3261 (1986)ADSCrossRefGoogle Scholar
  300. 300.
    B.C. Buchler, M.B. Gray, D.A. Shaddock, T.C. Ralph, D.E. McClelland, Suppression of classic and quantum radiation pressure noise by electro-optic feedback. Opt. Lett. 24, 259–261 (1999)ADSCrossRefGoogle Scholar
  301. 301.
    J.H. Shapiro, G. Saplakoglu, S.-T. Ho, P. Kumar, B.E.A. Saleh, M.C. Teich, Theory of light detection in the presence of feedback. JOSA B 4, 1604–1620 (1987)ADSCrossRefGoogle Scholar
  302. 302.
    S. Mancini, D. Vitali, P. Tombesi, Motional squashed states. J. Opt. B: Quantum Semiclass. Opt. 2, 190–195 (2000)ADSCrossRefGoogle Scholar
  303. 303.
    A.O. Caldeira, A.J. Leggett, Influence of damping on quantum interference: an exactly soluble model. Phys. Rev. A 31, 1059–1066 (1985)ADSCrossRefGoogle Scholar
  304. 304.
    G. Leuchs, U. Andersen, The effect of dissipation on non-classical states of the radiation field. Las. Phys. 15, 129–134 (2005)Google Scholar
  305. 305.
    J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323–1326 (1980)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  306. 306.
    G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for the Science of LightErlangenGermany

Personalised recommendations