Skip to main content

Extended Margin and Soft Balanced Strategies in Active Learning

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11019))

Included in the following conference series:

Abstract

Nowadays active learning is gaining increasing interest in computer vision community, especially on images. The most commonly used query strategy framework is uncertainty sampling usually in a pool-based sampling scenario. In this paper we propose two query strategies for image classification under the uncertainty sampling framework, both of them being improvements of existing techniques. The first strategy, so called Extended Margin incorporates all possible class labels to calculate the informativeness values of unlabeled instances. The second strategy is the improvement of the recently published BAL method, so called Soft Balanced approach, where we suggest new final informativeness score from an uncertainty measure and a novel penalty metric. We used least margin criterion for the former and the latter was calculated from the categorical penalty scores by using soft assignment. We conducted experiments on 60 different test image sets, each of them was a randomly selected subset of the Caltech101 image collection. The experiments were performed in an extended active learning environment and the results showed that the Extended Margin outperforms the least margin approach and the Soft Balanced method overcomes all other competitor method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifier. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  2. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    Article  MathSciNet  Google Scholar 

  3. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference, pp. 23.1–23.6 (1988)

    Google Scholar 

  4. Zhang, C., Chen, T.: An active learning framework for content based information retrieval. IEEE Trans. Multimed. 4(2), 260–268 (2002)

    Article  Google Scholar 

  5. Cai, W., Zhang, Y., Zhou, J.: Maximizing expected model change for active learning in regression. In: IEEE 13th International Conference on Data Mining, pp. 51–60 (2013)

    Google Scholar 

  6. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27.1–27.27 (2011)

    Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Angluin, D.: Queries and concept learning. Mach. Learn. 2, 319–342 (1988)

    MathSciNet  Google Scholar 

  9. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994)

    Google Scholar 

  10. Cohn, D., et al.: Training connectionist networks with queries and selective sampling. In: Advances in Neural Information Processing Systems (NIPS). Morgan Kaufmann, Burlington (1990)

    Google Scholar 

  11. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, Heidelberg (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

  12. Doyle, S., Monaco, J., Feldman, M., Tomaszewski, J., Madabhushi, A.: A class balanced active learning scheme that accounts for minority class problems: applications to histopathology. In: OPTIMHisE Workshop (MICCAI), pp. 19–30 (2009)

    Google Scholar 

  13. Fei-Fei, L., Fergus, R., Torralba, A.: Recognizing and learning object categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  14. Perronnin, F., Dance, C.: Fisher kernel on visual vocabularies for image categorization. In: Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  15. Gosselin, P.H., Murray, N., Jégou, H., Perronnin, F.: Revisiting the fisher vector for fine-grained classification. Pattern Recogn. Lett. 49, 92–98 (2014)

    Article  Google Scholar 

  16. Gupta, M.R., Chen, Y.: Theory and use of the EM algorithm. Sig. Process. 4(3), 223–296 (2010)

    MATH  Google Scholar 

  17. Huang, T.-K., Weng, R.C., Lin, C.-J.: Generalized Bradley-Terry models and multi-class probability estimates. J. Mach. Learn. Res. 7, 85–115 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: Proceedings of the 22nd British Machine Vision Conference, pp. 76.1–76.12 (2011)

    Google Scholar 

  19. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Generative-Model Based Vision (2004)

    Google Scholar 

  20. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  22. Mac Aodha, O., Campbell, N., Kautz, J., Brostow, G.: Hierarchical sub-query evaluation for active learning on a graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 564–571 (2014)

    Google Scholar 

  23. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  24. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  25. Minakawa, M., Raytchev, B., Tamaki, T., Kaneda, K.: Image sequence recognition with active learning using uncertainty sampling. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–6 (2013)

    Google Scholar 

  26. Papp, D., Szűcs, G.: Balanced active learning method for image classification. Acta Cybernetica 23(2), 645–658 (2017)

    Article  MathSciNet  Google Scholar 

  27. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3384–3391 (2010)

    Google Scholar 

  28. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  29. Platt, J.: Probabilistic outputs for support vector machines and comparison to regularize likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74 (2000)

    Google Scholar 

  30. Reynolds, D.A.: Gaussian mixture models. In: Encyclopedia of Biometric Recognition, pp. 659–663 (2009)

    Google Scholar 

  31. Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: Proceedings of the ACM International Conference on Multimedia, pp. 107–118 (2001)

    Google Scholar 

  32. Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning. Data Min. Knowl. Disc. 31, 164 (2017)

    Article  MathSciNet  Google Scholar 

  33. Tomasi, C.: Estimating Gaussian mixture densities with EM - a tutorial. Technical report, Duke University (2004)

    Google Scholar 

  34. Tsai, Y.L., Tsai, R.T.H., Chueh, C.H., Chang, S.C.: Cross-domain opinion word identification with query-by-committee active learning. In: Cheng, S.M., Day, M.Y. (eds.) TAAI 2014. LNCS, vol. 8916, pp. 334–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-13987-6_31

  35. Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. Int. J. Comput. Vis. 108(1–2), 97–114 (2014)

    Article  MathSciNet  Google Scholar 

  36. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vis. 113(2), 113–127 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The research has been supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Papp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papp, D., Szűcs, G. (2018). Extended Margin and Soft Balanced Strategies in Active Learning. In: Benczúr, A., Thalheim, B., Horváth, T. (eds) Advances in Databases and Information Systems. ADBIS 2018. Lecture Notes in Computer Science(), vol 11019. Springer, Cham. https://doi.org/10.1007/978-3-319-98398-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98398-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98397-4

  • Online ISBN: 978-3-319-98398-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics