Advertisement

RawVis: Visual Exploration over Raw Data

  • Nikos BikakisEmail author
  • Stavros Maroulis
  • George Papastefanatos
  • Panos Vassiliadis
Conference paper
  • 491 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11019)

Abstract

Data exploration and visual analytics systems are of great importance in Open Science scenarios, where less tech-savvy researchers wish to access and visually explore big raw data files (e.g., json, csv) generated by scientific experiments using commodity hardware and without being overwhelmed in the tedious processes of data loading, indexing and query optimization. In this work, we present our work for enabling efficient query processing on raw data files for interactive visual exploration scenarios. We introduce a framework, named RawVis, built on top of a lightweight in-memory tile-based index, VALINOR, that is constructed on-the-fly given the first user query over a raw file and adapted based on the user interaction. We evaluate the performance of prototype implementation compared to three other alternatives and show that our method outperforms in terms of response time, disk accesses and memory consumption.

Keywords

In situ query Big raw data Adaptive processing Visual analytics Visualization Indexing User interaction Exploratory data analysis 

Notes

Acknowledgments

This research is implemented through the Operational Program “Human Resources Development, Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national funds.

References

  1. 1.
    Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: NoDB: efficient query execution on raw data files. In: SIGMOD (2012)Google Scholar
  2. 2.
    Battle, L., Chang, R., Stonebraker, M.: Dynamic prefetching of data tiles for interactive visualization. In: SIGMOD 2016 (2016)Google Scholar
  3. 3.
    Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G., Sellis, T.: GraphVizdb: a scalable platform for interactive large graph visualization. In: ICDE (2016)Google Scholar
  4. 4.
    Bikakis, N., Papastefanatos, G., Skourla, M., Sellis, T.: A hierarchical aggregation framework for efficient multilevel visual exploration and analysis. Semant. Web J. 8, 139–179 (2017)Google Scholar
  5. 5.
    Blanas, S., Wu, K., Byna, S., Dong, B., Shoshani, A.: Parallel data analysis directly on scientific file formats. In: SIGMOD (2014)Google Scholar
  6. 6.
    Cheng, Y., Rusu, F.: SCANRAW: a database meta-operator for parallel in-situ processing and loading. ACM Trans. Database Syst. 40(3), 1–45 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB (1997)Google Scholar
  8. 8.
    de Lara Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.D.: Hashedcubes: simple, low memory, real-time visual exploration of big data. TVCG 23(1), 671–680 (2017)Google Scholar
  9. 9.
    El-Hindi, M., Zhao, Z., Binnig, C., Kraska, T.: VisTrees: fast indexes for interactive data exploration. In: HILDA (2016)Google Scholar
  10. 10.
    Hwang, S., Kwon, K., Cha, S.K., Lee, B.S.: Performance evaluation of main-memory R-tree variants. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 10–27. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45072-6_2CrossRefGoogle Scholar
  11. 11.
    Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here are my data files. Here are my queries. Where are my results? In: CIDR (2011)Google Scholar
  12. 12.
    Ivanova, M., Kersten, M.L., Manegold, S., Kargin, Y.: Data vaults database technology for scientific file repositories. Comput. Sci. Eng. 15(3), 32–42 (2013)CrossRefGoogle Scholar
  13. 13.
    Jugel, U., Jerzak, Z., Hackenbroich, G., Markl, V.: VDDA: automatic visualization-driven data aggregation in relational databases. VLDBJ 25, 53–77 (2015)CrossRefGoogle Scholar
  14. 14.
    Kalinin, A., Çetintemel, U., Zdonik, S.B.: Interactive data exploration using semantic windows. In: SIGMOD (2014)Google Scholar
  15. 15.
    Karpathiotakis, M., Branco, M., Alagiannis, I., Ailamaki, A.: Adaptive query processing on raw data. PVLDB 7(12), 1119–1130 (2014)Google Scholar
  16. 16.
    Olma, M., Karpathiotakis, M., Alagiannis, I., Athanassoulis, M., Ailamaki, A.: Slalom: coasting through raw data via adaptive partitioning and indexing. PVLDB 10(10), 1106–1117 (2017)Google Scholar
  17. 17.
    Tian, Y., Alagiannis, I., Liarou, E., Ailamaki, A., Michiardi, P., Vukolic, M.: DiNoDB: an interactive-speed query engine for ad-hoc queries on temporary data. IEEE TBD (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of IoanninaIoanninaGreece

Personalised recommendations