Skip to main content

Configuration and Control of Storages in Distribution Networks

  • Chapter
  • First Online:
Book cover Integration of Low Carbon Technologies in Smart Grids

Part of the book series: Springer Theses ((Springer Theses))

  • 312 Accesses

Abstract

In this chapter, the potential of applying ESS for facilitating the integration of renewables into electric power systems is presented. In particular, the possibility of using ESSs for mitigating over- and undervoltages in LV networks is investigated. Moreover, different algorithms for both planning and operation of such innovative devices are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In power systems, measurements of average power are typically labeled a posteriori, i.e., the power ascribed at time t actually represents the average power between \(t-1\) and t. On the other hand, the ESS control inputs holding between \(t-1\) and t are denoted by \(p_s^{ess}(t-1)\) and \(q_s^{ess}(t-1)\), consistently with the fact that they are decided at time \(t-1\).

References

  1. Giannitrapani A, Paoletti S, Vicino A, Zarrilli D (2015) Algorithms for placement and sizing of energy storage systems in LV networks. In: Proceedings of IEEE conference on decision and control, pp 3945–3950

    Google Scholar 

  2. Giannitrapani A, Paoletti S, Vicino A, Zarrilli D (2017) Optimal allocation of energy storage systems for voltage control in LV distribution networks. IEEE Trans Smart Grid 8(6):2859–2870

    Article  Google Scholar 

  3. Zarrilli D, Giannitrapani A, Paoletti S, Vicino A (2016) Receding horizon voltage control in LV networks with energy storage. In: Proceedings of IEEE conference on decision and control, pp 7496–7501

    Google Scholar 

  4. Zarrilli D, Giannitrapani A, Paoletti S, Vicino A (2018) Energy storage operation for voltage control in distribution networks: a receding horizon approach. IEEE Trans Control Syst Technol 26(2):599–609

    Article  Google Scholar 

  5. Xu T, Taylor PC (2008) Voltage control techniques for electrical distribution networks including distributed generation. In: Proceedings of IFAC world congress, pp 11,967–11,971

    Google Scholar 

  6. Procopiou AT, Long C, Ochoa LF (2014) Voltage control in LV networks: an initial investigation. In: Proceedings of IEEE PES innovative smart grid technologies European conference, pp 1–6

    Google Scholar 

  7. Tuominen J, Repo S, Kulmala A (2014) Comparison of the low voltage distribution network voltage control schemes. In: Proceedings of IEEE PES innovative smart grid technologies European conference

    Google Scholar 

  8. Long C, Ochoa LF (2015) Voltage control of PV-rich LV networks: OLTC-fitted transformer and capacitor banks. IEEE Trans Power Syst 1–10

    Google Scholar 

  9. Wang L, Liang DH, Crossland AF, Taylor PC, Jones D, Wade NS (2015) Coordination of multiple energy storage units in a low-voltage distribution network. IEEE Trans Smart Grid 6(6):2906–2918

    Article  Google Scholar 

  10. Nazaripouya H, Wang Y, Chu P, Pota HR, Gadh R (2015) Optimal sizing and placement of battery energy storage in distribution system based on solar size for voltage regulation. In: Proceedings of IEEE PES general meeting, pp 1–5

    Google Scholar 

  11. Nazaripouya H, Wang Y, Chu P, Pota HR, Gadh R (2015) Optimal siting and sizing of distributed energy storage systems via alternating direction method of multipliers. Int J Electr Power Energy Syst 72:33–39

    Article  Google Scholar 

  12. U.S. Department of Energy (2016) Grid energy storage. http://energy.gov/oe/downloads/grid-energy-storage-december-2013. Accessed 27 Apr 2016

  13. Int. Electrotechnical Commission (2016) Electrical energy storage. http://www.iec.ch/whitepaper/pdf/iecWP-energystorage-LR-en.pdf. Accessed 27 Apr 2016

  14. Zarrilli D, Vicino A, Mancarella P (2016) Sharing energy resources in distribution networks: an initial investigation through OPF studies. In: Proceedings of IEEE PES innovative smart grid technologies asian conference, pp 306–311

    Google Scholar 

  15. Saint-Pierre A, Mancarella P Active distribution system management: a dual-horizon scheduling framework for dso/tso interface under uncertainty. IEEE Trans Smart Grid, to appear

    Google Scholar 

  16. Pandzic H, Wang Y, Qiu T, Dvorkin Y, Kirschen DS (2015) Near-optimal method for siting and sizing of distributed storage in a transmission network. IEEE Trans Power Syst 30(5):2288–2300

    Article  Google Scholar 

  17. Zidar M, Georgilakis PS, Hatziargyriou ND, Capuder T, Škrlec D (2016) Review of energy storage allocation in power distribution networks: applications, methods and future research. IET Gener Transm Distrib 10(3):645–652

    Article  Google Scholar 

  18. Hoffman M, Kintner-Meyer M, DeSteese J, Sadovsky A (2011) Analysis tools for sizing and placement of energy storage in grid applications. In: Proceedings of ASME international conference on energy sustainability, pp 1565–1573

    Google Scholar 

  19. Bucciarelli M, Giannitrapani A, Paoletti S, Vicino A, Zarrilli D (2016) Energy storage sizing for voltage control in LV networks under uncertainty on PV generation. In: Proceedings of IEEE international forum on research and technologies for society and industry leveraging a better tomorrow, pp 1–6

    Google Scholar 

  20. Zhao H, Wu Q, Huang S, Guo Q, Sun H, Xue Y (2015) Optimal siting and sizing of energy storage system for power systems with large-scale wind power integration. In: Proceedings of IEEE PowerTech Eindhoven, pp 1–6

    Google Scholar 

  21. Thrampoulidis C, Bose S, Hassibi B (2016) Optimal placement of distributed energy storage in power networks. IEEE Trans Autom Control 61(2):416–429

    Article  MathSciNet  Google Scholar 

  22. Wogrin S, Gayme DF (2015) Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks. IEEE Trans Power Syst 30(6):3304–3313

    Article  Google Scholar 

  23. Ghofrani M, Arabali A, Etezadi-Amoli M, Fadali MS (2013) A framework for optimal placement of energy storage units within a power system with high wind penetration. IEEE Trans Sustain Energy 4(2):434–442

    Article  Google Scholar 

  24. Taylor JA, Hover FS (2012) Convex models of distribution system reconfiguration. IEEE Trans Power Syst 27(3):1407–1413

    Article  Google Scholar 

  25. Nick M, Cherkaoui R, Paolone M (2014) Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support. IEEE Trans Power Syst 29(5):2300–2310

    Article  Google Scholar 

  26. Bose S, Gayme DF, Topcu U, Chandy KM (2012) Optimal placement of energy storage in the grid. In: Proceedings of IEEE conference on decision and control, pp 5605–5612

    Google Scholar 

  27. Gayme D, Topcu U (2013) Optimal power flow with large-scale storage integration. IEEE Trans Power Syst 28(2):709–717

    Article  Google Scholar 

  28. Torchio M, Magni L, Raimondo D (2015) A mixed integer SDP approach for the optimal placement of energy storage devices in power grids with renewable penetration. In: Proceedings of American control conference, pp 3892–3897

    Google Scholar 

  29. Torchio M, Magni L, Raimondo D (2015) On the effects of monitoring and control settings on voltage control in PV-rich LV networks. In: Proceedings of IEEE PES general meeting, pp 1–5

    Google Scholar 

  30. Lavaei J, Low SH (2012) Zero duality gap in optimal power flow problem. IEEE Trans Power Syst 27(1):92–107

    Article  Google Scholar 

  31. Low SH (2014) Convex relaxation of optimal power flow-Part I: formulations and equivalence. IEEE Trans Control Netw Syst 1(1):15–27

    Article  MathSciNet  Google Scholar 

  32. Gan L, Low SH (2014) Convex relaxations and linear approximation for optimal power flow in multiphase radial networks. In: Proceedings of power systems computation conference, pp 1–9

    Google Scholar 

  33. Gan L, Low SH (2014) Convex relaxation of optimal power flow-Part II: exactness. IEEE Trans Control Netw Syst 1(2):177–189

    Article  MathSciNet  Google Scholar 

  34. Jabr RA, Karaki S, Korbane JA (2015) Robust multi-period OPF with storage and renewables. IEEE Trans Power Syst 30(5):2790–2799

    Article  Google Scholar 

  35. Brenna M, De Berardinis E, Delli Carpini L, Foiadelli F, Paulon P, Petroni P, Sapienza G, Scrosati G, Zaninelli D (2013) Automatic distributed voltage control algorithm in smart grids applications. IEEE Trans Smart Grid 4(2):877–885

    Article  Google Scholar 

  36. Nascimento MC, De Carvalho AC (2011) Spectral methods for graph clustering-a survey. Eur J Oper Res 211(2):221–231

    Article  MathSciNet  Google Scholar 

  37. Hespanha JP (2016) An efficient MATLAB algorithm for graph partitioning. http://www.ece.ucsb.edu/~hespanha/published/tr-ell-gp.pdf. Accessed 27 Apr 2016

  38. Malysz P, Sirouspour S, Emadi A (2014) An optimal energy storage control strategy for grid-connected microgrids. IEEE Trans Smart Grid 5(4):1785–1796

    Article  Google Scholar 

  39. Parisio A, Rikos E, Glielmo L (2014) A model predictive control approach to microgrid operation optimization. IEEE Trans Control Syst Technol 22(5):1813–1827

    Article  Google Scholar 

  40. Valverde G, Van Cutsem T (2013) Model predictive control of voltages in active distribution networks. IEEE Trans Smart Grid 4(4):2152–2161

    Article  Google Scholar 

  41. Farina M, Guagliardi A, Mariani F, Sandroni C, Scattolini R (2015) Model predictive control of voltage profiles in MV networks with distributed generation. Control Eng Pract 34:18–29

    Article  Google Scholar 

  42. Maciejowski JM (2002) Predictive control with constraints. Pearson Education

    Google Scholar 

  43. Dows R, Gough E (1995) PVUSA procurement, acceptance, and rating practices for photovoltaic power plants. Pacific Gas and Electric Company, San Ramon, CA, Technical Report

    Google Scholar 

  44. Bianchini G, Paoletti S, Vicino A, Corti F, Nebiacolombo F (2013) Model estimation of photovoltaic power generation using partial information. In: Proceedings of IEEE PES innovative smart grid technologies European conference

    Google Scholar 

  45. Reikard G (2009) Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol Energy 83:342–349

    Article  Google Scholar 

  46. Wu J, Chan C (2011) Prediction of hourly solar radiation using a novel hybrid model. Sol Energy 85:808–817

    Article  Google Scholar 

  47. Pepe D, Bianchini G, Vicino A (2016) Model estimation for PV generation forecasting using cloud cover information. In: Proceedings of IEEE international energy conference, pp 1–6

    Google Scholar 

  48. Garulli A, Paoletti S, Vicino A (2015) Models and techniques for electric load forecasting in the presence of demand response. IEEE Trans Control Syst Technol 23(3):1087–1097

    Article  Google Scholar 

  49. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control, 4th edn. Wiley

    Google Scholar 

  50. Grant M, Boyd S (2016) CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx. Accessed 27 Apr 2016

  51. Sturm J (1999) Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11(1–4):625–653

    Article  MathSciNet  Google Scholar 

  52. Kersting W (1991) Radial distribution test feeders. IEEE Trans Power Syst 6(3):975–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Zarrilli .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarrilli, D. (2019). Configuration and Control of Storages in Distribution Networks. In: Integration of Low Carbon Technologies in Smart Grids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98358-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98358-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98357-8

  • Online ISBN: 978-3-319-98358-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics