Skip to main content

A Novel Graph-Based Heuristic Approach for Solving Sport Scheduling Problem

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11008))

Abstract

This paper proposes an original and effective heuristic approach for solving the unconstrained traveling tournament problem (denoted by UTTP) in sport scheduling. UTTP is an interesting variant of the well-known NP-hard traveling tournament problem (TTP) where the main objective is to find a tournament schedule that minimizes the total distances traveled by the teams. The proposed graph-based heuristic method starts with a set of n teams \((n< 10)\). The method models the problem by representing the home locations of the teams as vertices and each arc corresponds to the matching between two teams. Each round corresponds to a 1-factor of the generated graph. We use the Bron-Kerbosch clique detection algorithm to enumerate all the possible \(2(n-1)\) cliques from the 1-factors. Then, the vertices of each \(2(n-1)\) cliques are sorted to create double round robin tournament (DRRT) schedules. The schedule with lowest cost travel is selected to be the solution of the problem. The proposed method is evaluated on several instances and compared with the state-of-the-art. The numerical results are promising and show the benefits of our method. The proposed method significantly improves the current best solutions for the US National Baseball League (NL) instances and produces new good solutions for the Rugby League (SUPER) instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. J. Sched. 9(2), 177–193 (2006)

    Article  MATH  Google Scholar 

  2. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhattacharyya, R.: Complexity of the unconstrained traveling tournament problem. Oper. Res. Lett. 44(5), 649–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biajoli, F.L., Lorena, L.A.N.: Clustering search approach for the traveling tournament problem. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 83–93. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76631-5_9

    Chapter  Google Scholar 

  5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  6. de Carvalho, M.A.M., Lorena, L.A.N.: New models for the mirrored traveling tournament problem. Comput. Ind. Eng. 63(4), 1089–1095 (2012)

    Article  Google Scholar 

  7. De Werra, D.: Scheduling in sports. Stud. Graphs Discrete Program. 11, 381–395 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_43

    Chapter  MATH  Google Scholar 

  9. Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Ann. Oper. Res. 218(1), 237–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Irnich, S.: A new branch-and-price algorithm for the traveling tournament problem. Eur. J. Oper. Res. 204(2), 218–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an annotated bibliography. Comput. Oper. Res. 37(1), 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khelifa, M., Boughaci, D.: A variable neighborhood search method for solving the traveling tournaments problem. Electr. Notes Discrete Math. 47, 157–164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khelifa, M., Boughaci, D.: Hybrid harmony search combined with variable neighborhood search for the traveling tournament problem. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016, Part I. LNCS (LNAI), vol. 9875, pp. 520–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_48

    Chapter  Google Scholar 

  14. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. Eur. J. Oper. Res. 174(3), 1459–1478 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Michael, T.: Challenge traveling tournament instances. http://mat.tepper.cmu.edu/TOURN/. Accessed Jan 2018

  17. Rasmussen, R.V., Trick, M.A.: A Benders approach for the constrained minimum break problem. Eur. J. Oper. Res. 177(1), 198–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rasmussen, R.V., Trick, M.A.: Round robin scheduling-a survey. Eur. J. Oper. Res. 188(3), 617–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem. Ann. Oper. Res. 171(1), 45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur. J. Oper. Res. 179(3), 775–787 (2007)

    Article  MATH  Google Scholar 

  21. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. In: Ravi, S.S., Shukla, S.K. (eds.) Fundamental Problems in Computing, pp. 45–69. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9688-4_3

    Chapter  Google Scholar 

  22. Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theor. Comput. Sci. 412(4–5), 345–351 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Ann. Oper. Res. 218(1), 347–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meriem Khelifa or Dalila Boughaci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khelifa, M., Boughaci, D., Aïmeur, E. (2018). A Novel Graph-Based Heuristic Approach for Solving Sport Scheduling Problem. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98334-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98333-2

  • Online ISBN: 978-3-319-98334-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics