Portfolio-Based Algorithm Selection for Circuit QBFs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)


Quantified Boolean Formulas (QBFs) are a generalization of propositional formulae that admits succinct encodings of verification and synthesis problems. Given that modern QBF solvers are based on different architectures with complementary performance characteristics, a portfolio-based approach to QBF solving is particularly promising.

While general QBFs can be converted to prenex conjunctive normal form (PCNF) with small overhead, this transformation has been known to adversely affect performance. This issue has prompted the development of several solvers for circuit QBFs in recent years.

We define a natural set of features of circuit QBFs and show that they can be used to construct portfolio-based algorithm selectors of state-of-the-art circuit QBF solvers that are close to the virtual best solver. We further demonstrate that most of this performance can be achieved using surprisingly small subsets of cheaply computable and intuitive features.


  1. 1.
    Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: Veloso, M.M., Kambhampati, S. (eds.) The Twentieth National Conference on Artificial Intelligence - AAAI 2005, pp. 275–281. AAAI Press/The MIT Press (2005)Google Scholar
  2. 2.
    Balyo, T., Lonsing, F.: HordeQBF: a modular and massively parallel QBF solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 531–538. Springer, Cham (2016). Scholar
  3. 3.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, 4–7 March 2015, Garching, Germany. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  4. 4.
    Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 457–481. IOS Press (2009)Google Scholar
  5. 5.
    Gebser, M., et al.: A portfolio solver for answer set programming: preliminary report. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 352–357. Springer, Heidelberg (2011). Scholar
  6. 6.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). Scholar
  7. 7.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)CrossRefGoogle Scholar
  8. 8.
    Janota, M.: Towards generalization in QBF solving via machine learning. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence - AAAI 2018. AAAI Press (2018)Google Scholar
  9. 9.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). Scholar
  10. 10.
    Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015. pp. 325–331. AAAI Press (2015)Google Scholar
  12. 12.
    Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)Google Scholar
  13. 13.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). Scholar
  14. 14.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In: Bessiere, C., et al. (eds.) Data Mining and Constraint Programming. LNCS (LNAI), vol. 10101, pp. 149–190. Springer, Cham (2016). Scholar
  15. 15.
    Lindauer, M.T., Hoos, H.H., Hutter, F., Schaub, T.: Autofolio: an automatically configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)CrossRefGoogle Scholar
  16. 16.
    Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–384. Springer, Cham (2017). Scholar
  17. 17.
    Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. CoRR abs/1701.06612 (2017).
  18. 18.
    O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intelligence and Cognitive Science, pp. 210–216 (2008)Google Scholar
  19. 19.
    Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 298–313. Springer, Cham (2017). Scholar
  20. 20.
    Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean formulas. Constraints 14(1), 80–116 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design - FMCAD 2015, pp. 136–143. IEEE Computer Society (2015)Google Scholar
  22. 22.
    Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)CrossRefGoogle Scholar
  23. 23.
    Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 483–504. IOS Press (2009)Google Scholar
  24. 24.
    Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22–26, 2007, Vancouver, British Columbia, Canada, pp. 255–260. AAAI Press (2007)Google Scholar
  25. 25.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Computing, 30 April–2 May 1973, Austin, Texas, USA, pp. 1–9. Association for Computing Machinery, New York (1973)Google Scholar
  26. 26.
    Tentrup, L.: Non-prenex QBF solving using abstraction. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 393–401. Springer, Cham (2016). Scholar
  27. 27.
    Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)CrossRefGoogle Scholar
  28. 28.
    Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 11–15 July 2010. AAAI Press (2010)Google Scholar
  29. 29.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands
  2. 2.Algorithms and Complexity GroupTU WienViennaAustria

Personalised recommendations