Skip to main content

Sensory Systems

  • Chapter
  • First Online:
Marine Mammals
  • 1879 Accesses

Abstract

Sensory receptors are specialized cells for transducing information from an animal’s environment into nerve impulses that are transmitted to the central nervous system for processing and integration to detect external variables and initiate responses that enhance survival. Each type of receptor has its own sensory modality such as photoreception (vision), mechanoreception (hearing, pressure, vibration, orientation, and acceleration), chemoreception (taste and smell), thermoreception (temperature), electroreception (electric field), and magnetoreception (magnetic field), although not all receptor types are present in every species, and some are more highly developed (i.e., provide greater acuity) than others. Although marine mammals evolved from terrestrial ancestors, the propagation and reception of light and sound in air and water are so different that these sensory systems have been modified for either a fully aquatic (Cetacea and Sirenia) or amphibious (pinnipeds and sea otters) lifestyle. Specialized tactile hairs (vibrissae) in some marine mammals, tactile sensitivity in the forepaws of sea otters, and electroreception in at least one species of Cetacea provide additional sensory information under disphotic (twilight) or aphotic (no solar light) conditions, which characterize most of the marine environment and some freshwater habitats. In contrast, chemosensory (olfaction and gustation) ability shows a convergent, evolutionary reduction associated with the transition from a terrestrial to aquatic life. Finally, emerging evidence indicates a magnetic sensory ability in Cetacea and pinnipeds for orientation and navigation during individual dives and long-distance migrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes R, Schulz T, Gero S, Whitehead H, Gordon J, Rendell L (2011) Individually distinctive acoustic features in sperm whale codas. Anim Behav 81:723–730

    Article  Google Scholar 

  • Au WWL (2018) Echolocation. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 289–298

    Chapter  Google Scholar 

  • Bauer GB, Colbert DE, Gaspard JC, Littlefield B, Fellner W (2003) Underwater visual acuity of Florida manatees. Int J Comp Psychol 16:130–142

    Google Scholar 

  • Bauer GB, Gaspard JC, Colbert DE, Leach JB, Stamper SA, Mann D, Reep R (2012) Tactile discrimination of textures by Florida manatees (Trichechus manatus latirostris). Mar Mamm Sci 28:E456–E471

    Article  Google Scholar 

  • Behrmann G (1988) The peripheral nerve ends in the tongue of the harbour porpoise, Phocoena phocoena (Linne, 1758). Aquat Mamm 14:107–112

    Google Scholar 

  • Berta A, Ekdale EG, Cranford TW (2014) Review of the cetacean nose: form, function, and evolution. Anat Rec 297:2205–2215

    Article  Google Scholar 

  • Best RC (1981) Foods and feeding habits of wild and captive Sirenia. Mamm Rev 11(1):3–29

    Article  Google Scholar 

  • Bills ML (2011) Description of the chemical senses of the Florida manatee, Trichechus manatus latirostris, in relation to reproduction. Dissertation, University of Florida, Gainsville

    Google Scholar 

  • Bischoff N, Nickle B, Cronin TW, Velasquez S, Fasick JI (2012) Deep-sea and pelagic rod visual pigments identified in the mysticete whales. Vis Neurosci 29:95–103

    Article  PubMed  Google Scholar 

  • Bodson A, Miersch L, Mauck B, Dehnhardt G (2006) Underwater auditory localization by a swimming harbor seal (Phoca vitulina). J Acoust Soc Am 120:1550–1557

    Article  PubMed  Google Scholar 

  • Bowditch N (1995) The American practical navigator. Defense mapping agency hydrographic/topographic center. Hydrographic Office of the United States Navy, Bethesda, pp 873

    Google Scholar 

  • Breathnach AS (1960) The cetacean central nervous system. Biol Rev 35:187–230

    Article  Google Scholar 

  • Busch H, Dücker G (1987) Das visuelle Leistungsvermögen der Seebären (Arctocephalus pusillus und Arctocephalus australis). Zool Anz 219:197–224

    Google Scholar 

  • Carrier DR, Debahn SM, Otterstrom J (2002) The face that sunk the Essex: potential function of the spermaceti organ in aggression. J Exp Biol 205:1755–1763

    PubMed  Google Scholar 

  • Castellini MA, Davis RW, Kooyman GL (1992) Annual cycles of diving behavior and ecology of Weddell seals. Volume 28. University of California Press, Oakland, California, p 54

    Google Scholar 

  • Cave AJE (1988) Note on olfactory activity in mysticetes. J Zool 214:307–311

    Article  Google Scholar 

  • Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464:297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charrier I, Harcourt RG (2006) Individual vocal identity in mother and pup Australian sea lions (Neophoca cinerea). J Mammal 87:929–938

    Article  Google Scholar 

  • Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikina M, Robinson JD, Clark NL (2016) Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Mol Biol Evol 33:2182–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleator HJ, Smith TG, Stirling I (1989) Underwater vocalizations of the bearded seal (Erignathus barbatus). Can J Zool 67:1900–1910

    Article  Google Scholar 

  • Cohen JL, Tucker GS, Odell DK (1982) The photoreceptors of the West Indian manatee. J Morphol 173:197–202

    Article  CAS  PubMed  Google Scholar 

  • Colbert DE, Gaspard JC, Reep R, Mann DA, Bauer GB (2009) Four choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris. J Exp Biol 212:2105–2112

    Article  PubMed  Google Scholar 

  • Cranford TW (1999) The sperm whale’s nose: sexual selection on a grand scale? Mar Mamm Sci 15:1133–1157

    Article  Google Scholar 

  • Cranford T, Krysl P (2018) Sound paths, cetaceans. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 901–904

    Chapter  Google Scholar 

  • Cranford TW, Amundin M, Norris KS (1996) Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J Morphol 228:223–285

    Article  CAS  PubMed  Google Scholar 

  • Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2012) Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc B 279:663–668

    Article  PubMed  Google Scholar 

  • Czech-Damal NU, Dehnhardt G, Manger P, Hanke W (2013) Passive electroreception in aquatic mammals. J Comp Physiol A 199:555–563

    Article  Google Scholar 

  • Davis RW, Fuiman L, Williams TM, Le Boeuf BJ (2001) Three-dimensional movements and swimming activity of a female northern elephant seal. Comp Biochem Physiol A Mol Integr Physiol 129:759–770

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G (2002) Sensory systems. In: Hoelzel AR (ed) Marine mammmal biology. Blackwell Publishing, Oxford, pp 116–141

    Google Scholar 

  • Dehnhardt G, Hanke FD (2018) Whiskers. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 1074–1077

    Chapter  Google Scholar 

  • Dehnhardt G, Mauck B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold, University of California Press, Oakland, California, pp 295–314

    Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236

    Article  CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Denton EJ (1990) Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 127–148

    Google Scholar 

  • Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domning DP (2005) Fossil sirenia of the West Atlantic and Caribbean region. VII. Pleistocene Trichechus manatus Linnaeus, 1758. J Vertebr Paleontol 25:685–701

    Article  Google Scholar 

  • Donaldson EJ (1977) The tongue of the bottlenose dolphin (Tursiops truncutus). In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 3. Academic Press, New York, pp 175–197

    Google Scholar 

  • Drake SE, Crish SD, George JC, Stimmelmayr R, Thewissen JGM (2015) Sensory hairs in the bowhead whale, Balaena mysticetus (Cetacea, Mammalia). Anat Rec 298:1327–1335

    Article  Google Scholar 

  • England DR, Dillon LS (1972) Cerebrum of the sea otter. Texas J Sci 24:22

    Google Scholar 

  • Erdogan S, Villar Arias S, Pérez W (2015) Morphology of the lingual surface of South American fur seal (Arctocephalus australis) and sea lion (Otaria flavescens). Microsc Res Tech 78:140–147

    Article  PubMed  Google Scholar 

  • Fasick JI, Robinson PR (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Vis Neurosci 17:781–788

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1988) Hearing vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Feng P, Zheng J, Rossiter SJ, Wang D, Zhao H (2014) Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol 6:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrando T, Caresano F, Ferrando S, Gallus L, Wurtz M, Taglifierro G (2010) The tongue morphology and lingual gland histochemistry of Ligurian sea odontocetes. Mar Mamm Sci 26:588–601

    Google Scholar 

  • Frankel AS (2018) Sound. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 889–901

    Chapter  Google Scholar 

  • Friedl WA, Nachtigall PE, Moore PWB, Chun NKW (1990) Taste reception in the Pacific bottlenose dolphin (Tursiops truncatus gilli) and the California sea lion (Zalophus californianus). In: Thomas J, Kastelein R (eds) Sensory abilities of cetaceans. Plenum, New York, pp 447–451

    Chapter  Google Scholar 

  • Funasaka N, Yoshioka M, Fujise Y (2010) Features of the ocular Harderian gland in three Balaenopterid species based on anatomical, histological and histochemical observations. Mamm Study 35:9–15

    Article  Google Scholar 

  • Gannon DP, Barros NB, Nowacek DP, Read AJ, Waples DM, Wells RS (2005) Prey detection by bottlenose dolphins, Tursiops truncatus: an experimental test of the passive listening hypothesis. Anim Behav 69:709–720

    Article  Google Scholar 

  • Gaspard JC, Bauer GB, Reep RL, Dziuk K, Cardwell A, Read L, Mann DA (2012) Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J Exp Biol 215:1442–1447

    Article  PubMed  Google Scholar 

  • Ghoul A, Reichmuth C (2012) Sound production and reception in southern sea otters (Enhydra lutris nereis). In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, New York, pp 157–159

    Chapter  Google Scholar 

  • Ghoul A, Reichmuth C (2014) Hearing in sea otters (Enhydra lutris): audible frequencies determined from a controlled exposure approach. Aquat Mamm 40:243–251

    Article  Google Scholar 

  • Ghoul A, Reichmuth C (2016) Auditory sensitivity and masking profiles for the sea otter (Enhydra lutris). In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life II. Springer, New York, pp 349–354

    Chapter  Google Scholar 

  • Ginter CC, Fish FE, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mamm Sci 26:733–743

    Google Scholar 

  • Godfrey SJ, Geisler J, Fitzgerald EMG (2013) On the olfactory anatomy in an archaic whale (Protocetidae, Cetacea) and the minke whale Balaenoptera acutorostrata (Balaenopteridae, Cetacea). Anat Rec 296:257–272

    Article  Google Scholar 

  • Griebel U, Schmid A (1996) Color vision in the manatee (Trichechus manatus). Vis Res 36:2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JR (1956) Scent of otariids. Nature 177:900

    Article  Google Scholar 

  • Hammock J (2005) Structure, function and context: the impact of morphometry and ecology on olfactory sensitivity. Dissertation. Woods Hole Oceanographic Institution, Massachusettes Institute of Technology

    Google Scholar 

  • Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009) Basic mechanisms in pinniped vision. Exp Brain Res 199:299–311

    Article  PubMed  Google Scholar 

  • Hanke W, Wieskotten S, Marshall C, Dehnhardt G (2013) Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A 199:421–440

    Article  Google Scholar 

  • Hardy MH, Roff E, Smith TG, Ryg M (1991) Facial skin glands of ringed and grey seals, and their possible function as odoriferous organs. Can J Zool 69:189–200

    Article  Google Scholar 

  • Harrison RJ, Kooyman GL (1968) General physiology of the pinnipeds. In: Harrison RJ, Hubbard RC, Peterson RS, Rice CE, Schusterman RJ (eds) The behavior and physiology of pinnipeds. Appleton-Century-Crofts, New York, pp 212–296

    Google Scholar 

  • Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemilä S, Nummela S, Berta A, Reuter T (2006) High-frequency hearing in phocid and otariid pinnipeds: an interpretation based on inertial and cochlear constraints (L). J Acoust Soc Am 120:3463–3466

    Article  PubMed  Google Scholar 

  • Hensel H, Andres KH, von During M (1974) Structure and function of cold receptors. Pflugers Arch 352:1–10

    Article  CAS  PubMed  Google Scholar 

  • Herman LM, Peacock MF, Yunker MP, Madsen CJ (1975) Bottlenosed dolphin: double-split pupil yields equivalent aerial and underwater diurnal acuity. Science 189:650–652

    Article  CAS  PubMed  Google Scholar 

  • Holland RA, Kirschvink JL, Doak TG, Wikelski M (2008) Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3(2):e1676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Insley SJ, Phillips AV, Charrier I (2003) A review of social recognition in pinnipeds. Aquat Mamm 29:181–201

    Article  Google Scholar 

  • Island HD, Wengeler J, Claussenius-Kalman H (2007) The Flehmen response and pseudosuckling in a captive, juvenile southern sea otter (Enhydra lutris nereis). Zoo Biol 9999:1–10

    Google Scholar 

  • Iwasaki S (2002) Evolution of the structure and function of the vertebrate tongue. J Anat 201:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A 109:4956–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MP, Madsen PT, Zimmer WMX, Aguilar de Soto N, Tyack PL (2004) Beaked whales echolocate on prey. Proc R Soc Lond B Biol Sci 271:S383–S386

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Yamasaki E (1981) A morphological note on the sinus hair of the dugong. In: Marsh H (ed) The Dugong: Proceedings of the Seminar/Workshop held at James Cook University of North Queensland, May 8–13, 1979. Department of Zoology, James Cook University of North Queensland, Australia, pp 193–197

    Google Scholar 

  • Kastak D, Schusterman RJ (1998) Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. J Acoust Soc Am 103:2216–2228

    Article  CAS  PubMed  Google Scholar 

  • Kastak D, Schusterman RJ (1999) In-air and underwater hearing sensitivity of a northern elephant seal (Mirounga angustirostris). Can J Zool 77:1751–1758

    Article  Google Scholar 

  • Kastelein RA, van Gaalen MA (1988) The sensitivity of the vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Part 1. Aquat Mamm 14:123–133

    Google Scholar 

  • Kastelein RA, Stevens S, Mosterd P (1990) The tactile sensitivity of the mystacial vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Part 2: masking. Aquat Mamm 16:78–87

    Google Scholar 

  • Kastelein RA, Zweypfenning RCVJ, Spekreijse H, Dubbeldam JL, Born EW (1993) The anatomy of the walrus head (Odobenus rosmarus). Part 3: the eyes and their function in walrus ecology. Aquat Mamm 19:61–92

    Google Scholar 

  • Kastelein RA, Dubbeldam JL, de Bakker MAG (1997) The anatomy of the walrus head (Odobenus rosmarus). Part 5: the tongue and its function in walrus ecology. Aquat Mamm 23:29–47

    Google Scholar 

  • Kastelein RA, Mosterd P, van Santen B, Hagedoorn M, de Haan D (2002) Underwater audiogram of a Pacific walrus (Odobenus rosmarus divergens) measured with narrow-band frequency-modulated signals. J Acoust Soc Am 112:2173–2182

    Article  CAS  PubMed  Google Scholar 

  • Kastelein RA, Schie R, Verboom WC, de Haan D (2005) Underwater hearing sensitivity of a male and a female Steller sea lion (Eumetopias jubatus) J. J Acoust Soc Am 118:1820–1829

    Article  PubMed  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    Article  CAS  PubMed  Google Scholar 

  • Keeton WT (1973) Release-site bias as a possible guide to the ‘map’ component in pigeon homing. J Comp Physiol 86:1–16

    Article  Google Scholar 

  • Kenyon KW (1969) The sea otter in the eastern Pacific Ocean. North American Fauna 68:1–352

    Article  Google Scholar 

  • Ketten (1992) Aquatic audition and echolocation. In: Webster D, Fay R, eds PA (eds) The biology of hearing. Springer, New York, pp 717–754

    Chapter  Google Scholar 

  • Ketten DR, Odell DK, Domning DP (1992) Structure, function, and adaptation of the manatee ear. In: Thomas J (ed) Marine mammal sensory systems. Plenum Press, New York, pp 77–95

    Chapter  Google Scholar 

  • Kirschvink J (1981) Ferromagnetic crystals (magnetite?) in human tissue. J Exp Biol 92:333–335

    CAS  PubMed  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Cur Opin Neurobiol 11:462–467

    Article  CAS  Google Scholar 

  • Kishida T, Thewissen JGM (2012) Evolutionary changes of the importance of olfaction in cetaceans based on the olfactory marker protein gene. Gene 492:349–353

    Article  CAS  PubMed  Google Scholar 

  • Kishida T, Kubota S, Shirayama Y, Fukami H (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 3:428–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishida T, Thewissen JGM, Hayakawa T, Imai H, Agata K (2015) Aquatic adaptation and the evolution of smell and taste in whales. Zoolog Lett 1:9

    Article  Google Scholar 

  • Klinowska L (1985) Cetacean live stranding sites relate to geomagnetic topography. Aquat Mamm 1:27–32

    Google Scholar 

  • Komatsu S, Yamasaki F (1980) Formation of the pits with taste-buds at the ligual root in the striped dolphin, Stenella coeruleoalba. J Morphol 164:107–119

    Article  PubMed  Google Scholar 

  • Kovacs KM (1995) Mother-pup reunions in harp seals, Phoca groenlandica: cues for the relocation of pups. Can J Zool 73:843–849

    Article  Google Scholar 

  • Kowalewsky S, Dambach M, Mauck B, Dehnhardt G (2006) High olfactory sensitivity for dimethyl sulphide in harbour seals. Biol Lett 2:106–109

    Article  CAS  PubMed  Google Scholar 

  • Kroger RH, Kirschfeld K (1993) Optics of the harbor porpoise eye in water. J Opt Soc Am A 10:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Kubota K (1968) Comparative anatomical and neurohistological observations on the tongue of the Northern fur seal (Callorhinus ursinus). Anat Rec 161:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VB (1974) A method of studying chemoreception in the Black sea bottlenose dolphin (Tursiops truncatus). In: Morphology, physiology and acoustics of marine mammals. Nauka Publishing House, Moscow, pp 27–45

    Google Scholar 

  • Ladygina TF, Popov VV, Supin AY (1985) Topical organization of somatic projections in the fur seal cerebral cortex. Neurophysiology 17:246–252

    Article  Google Scholar 

  • Landrau-Giovannetti N, Mignucci-Giannoni AA, Reidenberg JS (2014) Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees. Anat Rec 297:1896–1907

    Article  Google Scholar 

  • Laska L, Svelander M, Amundin M (2008) Successful acquisition of an olfactory discrimination paradigm by South African fur seals, Arctocephalus pusillus. Physiol Behav 93:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Laska L, Lord E, Selin S, Amundin M (2010) Olfactory discrimination of aliphatic odorants in South African fur seals (Arctocephalus pusillus). J Comp Psychol 124:187–193

    Article  PubMed  Google Scholar 

  • Lavigne DM, Ronald K (1975) Pinniped visual pigments. Comp Biochem Physiol 52B:325–329

    Google Scholar 

  • Lefebvre LW, O’Shea TJ, Rathbun GB, Best RC (1989) Distribution, status, and biogeography of the West Indian manatee. In: Woods CA (ed) Biogeography of the West Indies. Sandhill Crane Press, Gainesville, pp 567–610

    Google Scholar 

  • Levenson DH, Schusterman RJ (1999) Dark adaptation and visual sensitivity in shallow and deep diving pinnipeds. Mar Mamm Sci 15:1303–1313

    Article  Google Scholar 

  • Levenson DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–884

    Article  CAS  Google Scholar 

  • Levin MJ, Pfeiffer CJ (2002) Gross and microscopic observations on the lingual structure of the Florida manatee trichechus manatus latirostris. Anat Histol Embryol 31:278–285

    Article  CAS  PubMed  Google Scholar 

  • Liberles SD (2009) Trace amine-associated receptors are olfactory receptors in vertebrates. Ann NY Acad Sci 1170:168–172

    Article  CAS  PubMed  Google Scholar 

  • Liman ER, Zhang YV, Montell C (2014) Peripheral coding of taste. Neuron 81:984–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowell WR, Flanigan WF (1980) Marine mammal chemoreception. Mamm Rev 10:53–59

    Article  Google Scholar 

  • Lythgoe JN, Dartnall HJ (1970) A “deep sea rhodopsin” in a mammal. Nature 227:955–956

    Article  CAS  PubMed  Google Scholar 

  • Mackay-Sim A, Duvall D, Graves BM (1985) The West Indian manatee, Trichechus manatus, lacks a vomeronasal organ. Brain Behav Evol 27:186–194

    Article  CAS  PubMed  Google Scholar 

  • Madsen PT, Jensen FH, Carder D, Ridgway S (2012) Dolphin whistles: a functional misnomer revealed by heliox breathing. Biol Lett 8:211–213

    Article  CAS  PubMed  Google Scholar 

  • Marshall CD, Huth GD, Edmonds VM, Halin DL, Reep RL (1998) Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Mar Mamm Sci 14:274–289

    Article  Google Scholar 

  • Marshall CD, Kubilis PS, Juth GD, Edmonds VM, Halin DL, Reep RL (2000) Food-handling ability and feeding cycle of manatees feeding on several species of aquatic plants. J Mammal 81:649–658

    Article  Google Scholar 

  • Marshall CD, Maeda H, Iwata M, Furuta M, Asano S, Rosas F, Reep RL (2003) Orofacial morphology and feeding behaviour of the dugong, Amazonian, West African and Antillean manatees (Mammalia: Sirenia): functional morphology of the muscular-vibrissal complex. J Zool Lond 259:245–260

    Article  Google Scholar 

  • Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the mystacial vibrissal follicle-sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). Anat Rec 288A:13–25

    Article  Google Scholar 

  • Marshall CD, Rozas K, Kot B, Gill V (2014) Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes. Front Neuroanat 8(121):1–8

    Google Scholar 

  • Mass AM, Supin YA (2007) Adaptive features of the aquatic mammals’ eye. Anat Rec 290:701–715

    Article  Google Scholar 

  • Mass AM, Supin YA (2018) Vision. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 1035–1044

    Chapter  Google Scholar 

  • Mauck B, Eysel U, Dehnhardt G (2000) Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guiaensis). J Exp Biol 203:2125–2131

    CAS  PubMed  Google Scholar 

  • Mazzuca L, Atkinson S, Keating B, Nitta E (1999) Cetacean mass strandings in the Hawaiian Archipelago, 1957–1998. Aquat Mamm 25:105–114

    Google Scholar 

  • McFarland WN (1971) Cetacean visual pigments. Vis Res 11:1065–1076

    Article  CAS  PubMed  Google Scholar 

  • McGovern KA, Marshall CD, Davis RW (2014) Are vibrissae viable sensory structures for prey capture in northern elephant seals, Mirounga angustirostris? Anat Rec 298:750–760

    Article  Google Scholar 

  • McGowen MR, Clark C, Gatesy J (2008) The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between genetree reconciliation and supermatrix methods. Syst Biol 57:574–590

    Article  CAS  PubMed  Google Scholar 

  • McShane LJ, Estes JA, Riedman ML, Staedler MM (1995) Repertoire, structure, and individual variation of vocalizations in the sea otter. J Mammal 76:414–427

    Article  Google Scholar 

  • Meisami E, Bhatnagar KP (1998) Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech 43:476–499

    Article  CAS  PubMed  Google Scholar 

  • Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS (2013) Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet 9(4):e1003432. https://doi.org/10.1371/journal.pgen.1003432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard CL, Woolf CJ (1988) Sensory innervation of the hairs of the rat hindlimb: a light microscopic analysis. J Comp Neurol 277:183–194

    Article  CAS  PubMed  Google Scholar 

  • Møhl B, Wahlberg M, Madsen PT, Heerfordt A, Lund A (2003) The monopulsed nature of sperm whale clicks. J Acoust Soc Am 114:1143–1154

    Article  PubMed  Google Scholar 

  • Moore PWB, Schusterman RJ (1987) Audiometric assessment of northern fur seals, Callorhinus ursinus. Mar Mamm Sci 3:31–53

    Article  Google Scholar 

  • Morgane PJ, Jacobs JS (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 1. Academic Press, New York, pp 117–224

    Google Scholar 

  • Murphy CJ, Howland HC (1991) The functional significance of crescent-shaped pupils and multiple pupillary apertures. J Exp Zool 5:22–28

    Google Scholar 

  • Murphy CJ, Bellhorn RW, Williams T, Burns MS, Schaeffel F, Howland HC (1990) Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris). Vis Res 30:23–32

    Article  CAS  PubMed  Google Scholar 

  • Murphy CT, Reichmuth C, Mann D (2015) Vibrissal sensitivities in a harbor seal (Phoca vitulina). J Exp Biol 218:2463–2471

    Article  PubMed  Google Scholar 

  • Nachtigall PE, Hall RW (1984) Taste reception in the bottlenosed dolphin. Acta Zool Fennica 172:147–148

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2016) Approaches to understanding the cumulative effects of stressors on marine mammals. The National Academies Press, Washington, DC. Retrieved from https://doi.org/10.17226/23479

    Google Scholar 

  • Nevitt GA (1999) Olfactory foraging in Antarctic seabirds: a species specific attraction to krill odors. Mar Ecol Prog Ser 177:235–241

    Article  Google Scholar 

  • Newman LA, Robinson PR (2006) The visual pigments of the West Indian manatee (Trichechus manatus). Vis Res 46:3326–3330

    Article  CAS  PubMed  Google Scholar 

  • Nowacek DP, Casper BM, Wells RW, Nowacek SM, Mann DA (2003) Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations. J Acoust Soc Am 114:66–69

    Article  PubMed  Google Scholar 

  • Nummela S, Yamato M (2018) Hearing. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 462–469

    Chapter  Google Scholar 

  • O’Shea T, Poche LB (2006) Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J Mammal 87:1061–1071

    Article  Google Scholar 

  • Oelschläger HA (1989) Early development of the olfactory and terminalis systems in baleen whales. Brain Behav Evol 34:171–183

    Article  PubMed  Google Scholar 

  • Payne R, Webb D (1971) Orientation by means of long range acoustic signaling in baleen whales. Ann N Y Acad Sci 188:110–142

    Article  CAS  PubMed  Google Scholar 

  • Peichl L, Behrmann G, Kroger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer DC, Wang A, Nicolas J, Pfeiffer CF (2001) Lingual ultrastructure of the long-finned pilot whale (Globicephala melas). Anat Histol Embryol 30:359–365

    Article  CAS  PubMed  Google Scholar 

  • Piggins D, Muntz WRA, Best RC (1983) Physical and morphological aspects of the eye of the manatee Trichechus inunguis NATTERER 1883. Mar Freshw Behav Phy 9:111–130

    Article  Google Scholar 

  • Pihlström H, Fortelius M, Hemilä S, Forsman R, Reuter T (2005) Scaling of mammalian ethmoid bones can predict olfactory organ size and performance. Proc R Soc Lond B 272:957–962

    Article  Google Scholar 

  • Pilleri G, Gihr M (1970) The central nervous system of the Mysticete and Odontocete whales. Invest Cetacea 2:89–127

    Google Scholar 

  • Pitcher BJ, Harcourt RG, Charrier I (2012) Individual identity encoding and environmental constraints in vocal recognition of pups by Australian sea lion mothers. Anim Behav 83:681–690

    Article  Google Scholar 

  • Radinsky LB (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–506

    Article  CAS  PubMed  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML (2002) Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 9:141–154

    Article  Google Scholar 

  • Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998) Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Mar Mamm Sci 14:257–273

    Article  Google Scholar 

  • Reep RL, Stoll ML, Marshall CD, Homer BL, Samuelson DA (2001) Microanatomy of facial vibrissae in the Florida manatee: the basis for specialized sensory function and oripulation. Brain Behav Evol 58:1–14

    Article  CAS  PubMed  Google Scholar 

  • Reichmuth C, Holt MH, Mulsow J, Sills JM, Southall BL (2013) Comparative assessment of amphibious hearing in pinnipeds. J Comp Physiol A 199:491–507

    Article  Google Scholar 

  • Reidenberg JS, Laitman JT (2007) Discovery of a low frequency sound source in mysticeti (Baleen whales): anatomical establishment of a vocal fold homolog. Anat Rec 290:745–760

    Article  Google Scholar 

  • Renaud DL, Popper AN (1975) Sound localization by the bottlenose porpoise Tursiops truncatus. J Exp Biol 63:569–585

    CAS  PubMed  Google Scholar 

  • Richardson WJ, Greene CR, Malme CI, Thomson DH (1995) Marine mammals and noise. Academic Press, New York

    Google Scholar 

  • Ridgway SH, Carder DA (1990) Tactile sensitivity, somatosensory responses, skin vibrations and the skin surface ridges of the bottlenose dolphin, Tursiops truncatus. In: Thomas J, Kastelein R (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 163–179

    Chapter  Google Scholar 

  • Ridgway S, Houser D, Finneran J, Carder D, Keogh M, Van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R, Hoh C (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209:2902–2910

    Article  PubMed  Google Scholar 

  • Rivamonte LA (2009) Bottlenose dolphin (Tursiops truncatus) double-slit pupil asymmetries enhance vision. Aquat Mamm 35:269–280

    Article  Google Scholar 

  • Root CM, Denny CA, Hen R, Axel R (2014) The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell LR, Purdy JE, Davis RW (2016) Social context determines vocalization usage by Weddell seals during the breeding season. Anim Behav Cogn 3:95–119

    Article  Google Scholar 

  • Sarko DK, Reep RL, Mazurkiewicz JE, Rice FL (2007) Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris). J Comp Neurol 504:217–237

    Article  PubMed  Google Scholar 

  • Sato JJ, Wolsan M (2012) Loss or major reduction of umami taste sensation in pinnipeds. Naturwissenschaften 99:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvé CC, Beauplet G, Hammill MO, Charrier I (2015) Mother-pup vocal recognition in harbour seals: influence of maternal behavior, pup voice and habitat sound properties. Anim Behav 105:108–120

    Article  Google Scholar 

  • Schmidt-Koenig K, Walcott C (1978) Tracks of pigeons homing with frosted lenses. Anim Behav 26:480–486

    Article  Google Scholar 

  • Schusterman RJ, Balliet RF (1970) Visual acuity of the harbour seal and the Steller sea lion under water. Nature 226:563–564

    Article  CAS  PubMed  Google Scholar 

  • Schusterman RJ, Balliet RF (1971) Aerial and underwater visual acuity in the California sea lion (Zalophus californianus) as a function of luminance. Ann N Y Acad Sci 188:37–46

    Article  CAS  PubMed  Google Scholar 

  • Schusterman RJ, Moore P (1978) The upper limit of underwater auditory frequency discrimination in the California sea lion. J Acoust Soc Am 63:1591–1595

    Article  CAS  PubMed  Google Scholar 

  • Schusterman RJ, Balllet RF, St. John S (1970) Vocal displays under water by the grey seal, harbor seal and Steller sea lion. Psychon Sci 18:303–305

    Article  Google Scholar 

  • Schusterman RJ, Balliet RF, Nixon J (1972) Underwater audiogram of the California sea lion by the conditioned vocalization technique. J Exp Anal Behav 17:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimek SJ (1977) Observations on the underwater foraging habits of the southern sea otter. Calif Fish Game 63:120–121.

    Google Scholar 

  • Shimoda T, Nakanishi E, Yoshino S, Kobayashi S (1996) Light and scanning electron microscopic study on the lingual papillae in the newborn sea otter Enhydra lutris. Okajimas Folia Anat Jpn 73:65–74

    Article  CAS  PubMed  Google Scholar 

  • Slijper E (1962) Whales. Hutchinson, London, p 511

    Google Scholar 

  • Sonntag CF (1923) The comparative anatomy of the tongues of the Mammalia. 8. Carnivora. Proc Zool Soc Lond 9:129–153

    Google Scholar 

  • Spoor F, Thewissen JGM (2008) Balance: comparative and functional anatomy in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold, adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 257–284

    Google Scholar 

  • Spoor F, Bajpai S, Hussain ST, Kumar K, Thewissen JGM (2002) Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417:163–166

    Article  CAS  PubMed  Google Scholar 

  • Stoddart DM (1980a) Olfaction in mammals. Zoological Society of London, Symposium 45. Academic Press, London, p 363

    Google Scholar 

  • Stoddart DM (1980b) The ecology of vertebrate olfaction. Chapman and Hall, London, p 234

    Book  Google Scholar 

  • Strobel SM, Sills JM, Tinker MT, Reichmuth CJ (2018) Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. https://doi.org/10.1242/jeb.181347

    Article  PubMed  Google Scholar 

  • Strod T, Arad Z, Izhaki I, Katzir G (2004) Cormorants keep their power: visual resolution in a pursuit-diving bird under amphibious and turbid conditions. Curr Biol 14:R376–R377

    Article  CAS  PubMed  Google Scholar 

  • Tarpley RJ, Gelderd JB, Bauserman S, Ridgway SH (1994) Dolphin peripheral visual pathway in chronic unilateral ocular atrophy: complete decussation apparent. J Morphol 222:91–102

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JGM, George J, Rosa C, Kishida T (2011) Olfaction and brain size in the bowhead whale (Balaena mysticetus). Mar Mamm Sci 27:282–294

    Article  Google Scholar 

  • Thomas JA, Kuechle VB (1982) Quantitative analysis of Weddell seal (Lepronychores weddelii) underwater vocalizations at McMurdo Sound, Antarctica. J Acoust Soc Am 72:1730–1738

    Article  CAS  PubMed  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332

    Article  CAS  PubMed  Google Scholar 

  • Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ, Turner HN, Mulhall EM, Ye W, Smith AD, Liman ER (2018) An evolutionarily conserved gene family encodes proton-selective ion channels. Sci 359:1047–1050

    Article  CAS  Google Scholar 

  • Van Parijs SM, Corkeron PJ, Harvey J, Hayes SA, Mellinger DK, Rouget PA, Thompson PM, Wahlberg M, Kovacs KM (2003) Patterns in the vocalisations of male harbor seals. J Acoust Soc Am 113:403–410

    Google Scholar 

  • Van Valkenburgh B, Curtis A, Samuels JX, Bird D, Fulkerson B, Meachen-Samuels J, Slater GJ (2011) Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J Anat 218:298–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenbeuch A, Clapp TR, Kinnamon SC (2008) Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 9:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanselow KH, Ricklefs K (2005) Are solar activity and sperm whale Physeter macrocephalus strandings around the North sea related? J Sea Res 53:319–327

    Article  Google Scholar 

  • Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 143–151

    Chapter  Google Scholar 

  • Walcott C, Schmidt-Koenig K (1973) The effect on pigeon homing of anesthesia during displacement. Auk 90:281–286

    Google Scholar 

  • Waller GH, Harrison RJ (1978) The significance of eyelid glands in delphinids. Aquat Mamm 6:1–9

    Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    Article  PubMed  Google Scholar 

  • Wartzok D (1979) Phocid spectral sensitivity curves. In: Proceedings of the 3rd biennial conference on the biology of marine mammals, Seattle, October 1979, p 62

    Google Scholar 

  • Wartzok D, Ketten DR (1999) Marine mammal sensory systems. In: Reynolds J, Rommel S (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, DC, pp 117–175

    Google Scholar 

  • Wartzok D, McCormick MG (1978) Color discrimination by a Bering sea spotted seal, Phoca largha. Vis Res 18:781–784

    Article  CAS  PubMed  Google Scholar 

  • Wartzok D, Elsner R, Stone H, Kelly BP, Davis RW (1992) Under-ice movements and the sensory basis of hole finding by ringed and Weddell seals. Can J Zool 70:1712–1722

    Article  Google Scholar 

  • Watwood SL, Miller PJO, Johnson M, Madsen PT, Tyack PL (2006) Deep-diving foraging behavior of sperm whales (Physeter macrocephalus). J Anim Ecol 75:814–825

    Article  PubMed  Google Scholar 

  • Werth AJ (2007) Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat Rec 290:546–568

    Article  Google Scholar 

  • Whitehead H (2018) Sperm whale. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 919–925

    Chapter  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930

    Article  PubMed  Google Scholar 

  • Willmer P, Graham S, Johnston I (2005) Environmental physiology of animals. Blackwell Science, Oxford, p 754

    Google Scholar 

  • Wolt R, Gelwick FP, Weltz F, Davis RW (2012) Foraging behavior and prey preference of sea otters (Enhydra lutris kenyoni) in a predominantly soft sediment habitat in Alaska. Mamm Biol 77:271–280

    Article  Google Scholar 

  • Yamasaki F, Komatsu S, Kamiya T (1978) Taste buds in the pits at the posterior dorsum of the tongue of Stenella coeruleoalba. Sci Rep Whales Res Inst 30:285–290

    Google Scholar 

  • Yamasaki F, Komatsu S, Kamiya T (1980) A comparative morphological study on the tongues of manatee and dugong (Sirenia). Sci Rep Whales Res Inst 32:127–144

    Google Scholar 

  • Yea W, Changa RB, Bushmana JD, Tua Y-H, Mulhalla EM, Wilson CE, Coopera AJ, Chickd WS, Hill-Eubanks DC, Nelson MT, Kinnamonb SC, Limana ER (2015) The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A 113:E229–E238

    Article  CAS  Google Scholar 

  • Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Kobayashi K (1997) A comparative morphological study on the tongue and the lingual papillae of some marine mammals-particularly of four species of Odontoceti and Zalophus. Odontology 85:385–507

    Google Scholar 

  • Yoshimura K, Shindoh J, Kobayashi K (2002) Scanning electron microscopy study of the tongue and lingual papillae of the California sea lion (Zalophus californianus). Anat Rec 267:146–153

    Article  PubMed  Google Scholar 

  • Yoshimura K, Shindo J, Miyawaki Y, Kobayashi K, Kageyama I (2007) Scanning electron microscopic study on the tongue and lingual papillae of the adult spotted seal, Phoca largha. Okajimas Folia Anat Jpn 84:83–97

    Article  PubMed  Google Scholar 

  • Yu L, Jin W, Wang J, Zhang X, Chen M, Zhou Z, Lee H, Lee M, Zhang Y (2010) Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol 27:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Zoeger J, Dunn JR, Fuller M (1980) Magnetic material in the head of a dolphin (abst.). Trans Am Geophys Union 61:225

    Google Scholar 

  • Zoeger J, Dunn JR, Fuller M (1981) Magnetic material in the head of the common Pacific dolphin. Science 213:892–894

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, R.W. (2019). Sensory Systems. In: Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-319-98280-9_7

Download citation

Publish with us

Policies and ethics