Advertisement

Results

  • Pantelis PnigourasEmail author
Chapter
  • 96 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

After setting up the problem at hand (Sect. 5.1), we derive some helpful approximate relations for the parametric instability threshold (Sect. 5.2), used later during the discussion of the results. We will present results both for typical (Sect. 5.3) and supramassive (Sect. 5.4) neutron stars, for various polytropic and adiabatic exponents. In each section, we review the evolution of the instability and discuss the results. We also present estimations about the contribution of the f-mode instability to the stochastic gravitational-wave background, both from typical and supramassive neutron stars (Sect. 5.5). Finally, we review the studies on the saturation of the r-mode instability via mode coupling and compare them to our results (Sect. 5.6).

References

  1. Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. (1998). Equation of state of nucleon matter and neutron star structure. Physical Review C, 58, 1804–1828.  https://doi.org/10.1103/PhysRevC.58.1804, arXiv:nucl-th/9804027.ADSCrossRefGoogle Scholar
  2. Andersson, N. (1998). A new class of unstable modes of rotating relativistic stars. The Astrophysical Journal, 502, 708–713.  https://doi.org/10.1086/305919, arXiv:gr-qc/9706075.ADSCrossRefGoogle Scholar
  3. Andersson, N., Jones, D. I., & Kokkotas, K. D. (2002). Strange stars as persistent sources of gravitational waves. Monthly Notices of the Royal Astronomical Society, 337, 1224–1232.  https://doi.org/10.1046/j.1365-8711.2002.05837.x, arXiv:astro-ph/0111582.ADSCrossRefGoogle Scholar
  4. Arras, P., Flanagan, É. É., Morsink, S. M., Schenk, A. K., Teukolsky, S. A., & Wasserman, I. (2003). Saturation of the r-mode instability. The Astrophysical Journal, 591, 1129–1151.  https://doi.org/10.1086/374657, arXiv:astro-ph/0202345.ADSCrossRefGoogle Scholar
  5. Ballot, J., Lignières, F., Prat, V., Reese, D. R., & Rieutord, M. (2012). 2D Computations of g-modes in Fast Rotating Stars. In H. Shibahashi, M. Takata, & A. E. Lynas-Gray (Eds.), Progress in solar/stellar physics with helio- and asteroseismology (vol. 462). Astronomical Society of the Pacific Conference Series.http://adsabs.harvard.edu/abs/2012ASPC..462..389B.
  6. Ballot, J., Lignières, F., Reese, D. R., & Rieutord, M. (2010). Gravity modes in rapidly rotating stars. Limits of perturbative methods. Astronomy & Astrophysics, 518, A30.  https://doi.org/10.1051/0004-6361/201014426, arXiv:1005.0275.ADSCrossRefGoogle Scholar
  7. Baumgarte, T. W., Shapiro, S. L. & Shibata, M. (2000). On the maximum mass of differentially rotating neutron stars. The Astrophysical Journal, 528, L29–L32.  https://doi.org/10.1086/312425, arXiv:astro-ph/9910565.ADSCrossRefGoogle Scholar
  8. Bondarescu, R., Teukolsky, S. A., & Wasserman, I. (2007). Spin evolution of accreting neutron stars: Nonlinear development of the r-mode instability. Physical Review D, 76, 064019.  https://doi.org/10.1103/PhysRevD.76.064019, arXiv:0704.0799.
  9. Bondarescu, R., Teukolsky, S. A., & Wasserman, I. (2009). Spinning down newborn neutron stars: Nonlinear development of the r-mode instability. Physical Review D, 79, 104003.  https://doi.org/10.1103/PhysRevD.79.104003, arXiv:0809.3448.
  10. Brink, J., Teukolsky, S. A., & Wasserman, I. (2004a). Nonlinear coupling network to simulate the development of the r-mode instability in neutron stars. I. Construction. Physical Review D, 70, 124017.  https://doi.org/10.1103/PhysRevD.70.124017, arXiv:gr-qc/0409048.
  11. Brink, J., Teukolsky, S. A., & Wasserman, I. (2004b). Nonlinear couplings of R-modes: Energy transfer and saturation amplitudes at realistic timescales. Physical Review D, 70, 121501.  https://doi.org/10.1103/PhysRevD.70.121501, arXiv:gr-qc/0406085.
  12. Brink, J., Teukolsky, S. A., & Wasserman, I. (2005). Nonlinear coupling network to simulate the development of the r mode instability in neutron stars. II. Dynamics. Physical Review D, 71, 064029.  https://doi.org/10.1103/PhysRevD.71.064029, arXiv:gr-qc/0410072.
  13. Burrows, A. (1990). Neutrinos from supernova explosions. Annual Review of Nuclear and Particle Science, 40, 181–212.  https://doi.org/10.1146/annurev.ns.40.120190.001145.ADSCrossRefGoogle Scholar
  14. Burrows, A., & Lattimer, J. M. (1986). The birth of neutron stars. The Astrophysical Journal, 307, 178–196.  https://doi.org/10.1086/164405.ADSCrossRefGoogle Scholar
  15. Ciolfi, R., & Siegel, D. M. (2015). Short gamma-ray bursts in the “time-reversal” scenario. The Astrophysical Journal, 798, L36.  https://doi.org/10.1088/2041-8205/798/2/L36, arXiv:1411.2015.ADSCrossRefGoogle Scholar
  16. Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. (1992). Spin-up of a rapidly rotating star by angular momentum loss: Effects of general relativity. The Astrophysical Journal, 398, 203–223.  https://doi.org/10.1086/171849.ADSCrossRefGoogle Scholar
  17. Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. (1994). Rapidly rotating neutron stars in general relativity: Realistic equations of state. The Astrophysical Journal, 424, 823–845.  https://doi.org/10.1086/173934.ADSCrossRefGoogle Scholar
  18. Dai, Z. G., & Lu, T. (1998). Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars. Astronomy & Astrophysics, 333, L87–L90. http://adsabs.harvard.edu/abs/1998A%26A...333L..87D, arXiv:astro-ph/9810402.
  19. Dall’Osso, S., Giacomazzo, B., Perna, R., & Stella, L. (2015). Gravitational waves from massive magnetars formed in binary neutron star mergers. The Astrophysical Journal, 798, 25.  https://doi.org/10.1088/0004-637X/798/1/25, arXiv:1408.0013.ADSCrossRefGoogle Scholar
  20. Dauxois, T. (2008). Fermi, Pasta, Ulam, and a mysterious lady. Physics Today, 61, 55.  https://doi.org/10.1063/1.2835154, arXiv:0801.1590.ADSCrossRefGoogle Scholar
  21. Dintrans, B., & Rieutord, M. (2000). Oscillations of a rotating star: A non-perturbative theory. Astronomy & Astrophysics, 354, 86–98. http://adsabs.harvard.edu/abs/2000A%26A...354...86D.
  22. Doneva, D. D., & Kokkotas, K. D. (2015). Asteroseismology of rapidly rotating neutron stars: An alternative approach. Physical Review D, 92, 124004.  https://doi.org/10.1103/PhysRevD.92.124004, arXiv:1507.06606.
  23. Doneva, D. D., Gaertig, E., Kokkotas, K. D., & Krüger, C. (2013). Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state. Physical Review D, 88, 044052.  https://doi.org/10.1103/PhysRevD.88.044052, arXiv:1305.7197.
  24. Doneva, D. D., Kokkotas, K. D., & Pnigouras, P. (2015). Gravitational wave afterglow in binary neutron star mergers. Physical Review D, 92, 104040.  https://doi.org/10.1103/PhysRevD.92.104040, arXiv:1510.00673.
  25. Duez, M. D., Liu, Y. T., Shapiro, S. L., Shibata, M., & Stephens, B. C. (2006). Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity. Physical Review D, 73, 104015.  https://doi.org/10.1103/PhysRevD.73.104015, arXiv:astro-ph/0605331.
  26. Duncan, R. C., & Thompson, C. (1992). Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. The Astrophysical Journal, 392, L9–L13.  https://doi.org/10.1086/186413.ADSCrossRefGoogle Scholar
  27. Fermi, E., Pasta, J., Ulam, S., & Tsingou, M. (1955). Studies of nonlinear problems. Report LA-1940, Los Alamos Scientific Laboratory, Los Alamos.Google Scholar
  28. Fermi, E. (1965). Collected papers (vol. II, pp. 977–988). Chicago: The University of Chicago Press.Google Scholar
  29. Ferrari, V., Matarrese, S., & Schneider, R. (1999). Stochastic background of gravitational waves generated by a cosmological population of young, rapidly rotating neutron stars. Monthly Notices of the Royal Astronomical Society, 303, 258–264.  https://doi.org/10.1046/j.1365-8711.1999.02207.x, arXiv:astro-ph/9806357.ADSCrossRefGoogle Scholar
  30. Friedman, J. L., & Morsink, S. M. (1998). Axial instability of rotating relativistic stars. The Astrophysical Journal, 502, 714–720.  https://doi.org/10.1086/305920, arXiv:gr-qc/9706073.ADSCrossRefGoogle Scholar
  31. Fryer, C. L., Belczynski, K., Ramirez-Ruiz, E., Rosswog, S., Shen, G., & Steiner, A. W. (2015). The fate of the compact Remnant in neutron star mergers. The Astrophysical Journal, 812, 24.  https://doi.org/10.1088/0004-637X/812/1/24, arXiv:1504.07605.ADSCrossRefGoogle Scholar
  32. Gaertig, E., & Kokkotas, K. D. (2009). Relativistic g-modes in rapidly rotating neutron stars. Physical Review D, 80, 064026.  https://doi.org/10.1103/PhysRevD.80.064026, arXiv:0905.0821.
  33. Gaertig, E., Glampedakis, K., Kokkotas, K. D., & Zink, B. (2011). F-mode instability in relativistic neutron stars. Physical Review Letters, 107, 101102.  https://doi.org/10.1103/PhysRevLett.107.101102, arXiv:1106.5512.
  34. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. (2003). How massive single stars end their life. The Astrophysical Journal, 591, 288–300.  https://doi.org/10.1086/375341, arXiv:astro-ph/0212469.ADSCrossRefGoogle Scholar
  35. Hotokezaka, K., Kiuchi, K., Kyutoku, K., Muranushi, T., Sekiguchi, Y.-i., Shibata, M., & Taniguchi, K. (2013). Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform. Physical Review D, 88, 044026.  https://doi.org/10.1103/PhysRevD.88.044026, arXiv:1307.5888.
  36. Ipser, J. R., & Lindblom, L. (1990). The oscillations of rapidly rotating Newtonian stellar models. The Astrophysical Journal, 355, 226–240.  https://doi.org/10.1086/168757.ADSCrossRefGoogle Scholar
  37. Kastaun, W., & Galeazzi, F. (2015). Properties of hypermassive neutron stars formed in mergers of spinning binaries. Physical Review D, 91, 064027.  https://doi.org/10.1103/PhysRevD.91.064027, arXiv:1411.7975.
  38. Kastaun, W., Willburger, B., & Kokkotas, K. D. (2010). Saturation amplitude of the f-mode instability. Physical Review D, 82, 104036.  https://doi.org/10.1103/PhysRevD.82.104036, arXiv:1006.3885.
  39. Lee, W. H., & Ramirez-Ruiz, E. (2007). The progenitors of short gamma-ray bursts. New Journal of Physics, 9, 17.  https://doi.org/10.1088/1367-2630/9/1/017, arXiv:astro-ph/0701874.ADSCrossRefGoogle Scholar
  40. Lignières, F., Rieutord, M., & Reese, D. (2006). Acoustic oscillations of rapidly rotating polytropic stars. I. Effects of the centrifugal distortion. Astronomy & Astrophysics, 455, 607–620.  https://doi.org/10.1051/0004-6361:20065015, arXiv:astro-ph/0604312.ADSCrossRefGoogle Scholar
  41. Lockitch, K. H., & Friedman, J. L. (1999). Where are the R-modes of isentropic stars? The Astrophysical Journal, 521, 764–788.  https://doi.org/10.1086/307580, arXiv:gr-qc/9812019.ADSCrossRefGoogle Scholar
  42. MacFadyen, A. I., Woosley, S. E., & Heger, A. (2001). Supernovae, jets, and collapsars. The Astrophysical Journal, 550, 410–425.  https://doi.org/10.1086/319698, arXiv:astro-ph/9910034.ADSCrossRefGoogle Scholar
  43. Morsink, S. M. (2002). Nonlinear couplings between r-modes of rotating neutron stars. The Astrophysical Journal, 571, 435–446.  https://doi.org/10.1086/339858, arXiv:astro-ph/0202051.ADSCrossRefGoogle Scholar
  44. Owen, B. J., Lindblom, L., Cutler, C., Schutz, B. F., Vecchio, A., & Andersson, N. (1998). Gravitational waves from hot young rapidly rotating neutron stars. Physical Review D, 58, 084020.  https://doi.org/10.1103/PhysRevD.58.084020, arXiv:gr-qc/9804044.
  45. Passamonti, A., Gaertig, E., Kokkotas, K. D., & Doneva, D. (2013). Evolution of the f-mode instability in neutron stars and gravitational wave detectability. Physical Review D, 87, 084010.  https://doi.org/10.1103/PhysRevD.87.084010, arXiv:1209.5308.
  46. Passamonti, A., Haskell, B., Andersson, N., Jones, D. I., & Hawke, I. (2009). Oscillations of rapidly rotating stratified neutron stars. Monthly Notices of the Royal Astronomical Society, 394, 730–741.  https://doi.org/10.1111/j.1365-2966.2009.14408.x, arXiv:0807.3457.ADSCrossRefGoogle Scholar
  47. Passamonti, A. (2009). Time evolution of rapidly rotating stratified neutron stars. Journal of Physics: Conference Series, 189, 012030.  https://doi.org/10.1088/1742-6596/189/1/012030.CrossRefGoogle Scholar
  48. Pnigouras, P., & Kokkotas, K. D. (2016). Saturation of the f-mode instability in neutron stars. II. Applications and results. Physics Review D, 94, 024053.  https://doi.org/10.1103/PhysRevD.94.024053, arXiv:1607.03059.
  49. Prakash, M., Lattimer, J. M., Pons, J. A., Steiner, A. W. , & Reddy, S. (2001). Evolution of a neutron star from its birth to old age. In D. Blaschke, N. K. Glendenning, & A. Sedrakian (Eds.), Physics of neutron star interiors (vol. 578). Lecture notes in physics. Berlin: Springer. http://adsabs.harvard.edu/abs/2001LNP...578..364P, arXiv:astro-ph/0012136.Google Scholar
  50. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in FORTRAN 77 (vol. 1, 2nd ed.). Fortran numerical recipes. Cambridge: Cambridge University Press. http://adsabs.harvard.edu/abs/1992nrfa.book....P.
  51. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1996). Numerical recipes in FORTRAN 90 (vol. 2, 2nd ed.). Fortran numerical recipes. Cambridge: Cambridge University Press. http://adsabs.harvard.edu/abs/1992nrfa.book....P.
  52. Ravi, V., & Lasky, P. D. (2014). The birth of black holes: Neutron star collapse times, gamma-ray bursts and fast radio bursts. Monthly Notices of the Royal Astronomical Society, 441, 2433–2439.  https://doi.org/10.1093/mnras/stu720, arXiv:1403.6327.ADSCrossRefGoogle Scholar
  53. Reese, D., Lignières, F., & Rieutord, M. (2006). Acoustic oscillations of rapidly rotating polytropic stars. II. Effects of the Coriolis and centrifugal accelerations. Astronomy & Astrophysics, 455, 621–637.  https://doi.org/10.1051/0004-6361:20065269, arXiv:astro-ph/0605503.ADSCrossRefGoogle Scholar
  54. Regimbau, T. (2011). The astrophysical gravitational wave stochastic background. Research in Astronomy and Astrophysics, 11, 369–390.  https://doi.org/10.1088/1674-4527/11/4/001, arXiv:1101.2762.ADSCrossRefGoogle Scholar
  55. Rezzolla, L., & Kumar, P. (2015). A novel paradigm for short gamma-ray bursts with extended X-ray emission. The Astrophysical Journal, 802, 95.  https://doi.org/10.1088/0004-637X/802/2/95, arXiv:1410.8560.ADSCrossRefGoogle Scholar
  56. Rowlinson, A. (2013). Studying the multi-wavelength signals from short GRBs. In Proceedings of the 7th Huntsville gamma ray burst symposium. Nashville, USA: eConf C1304143. http://adsabs.harvard.edu/abs/2013arXiv1308.1684R, arXiv:1308.1684.
  57. Rowlinson, A., O’Brien, P. T., Metzger, B. D., Tanvir, N. R., & Levan, A. J. (2013). Signatures of magnetar central engines in short GRB light curves. Monthly Notices of the Royal Astronomical Society, 430, 1061–1087.  https://doi.org/10.1093/mnras/sts683, arXiv:1301.0629.ADSCrossRefGoogle Scholar
  58. Schenk, A. K., Arras, P., Flanagan, É. É., Teukolsky, S. A., & Wasserman, I. (2001). Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars. Physical Review D, 65, 024001.  https://doi.org/10.1103/PhysRevD.65.024001, arXiv:gr-qc/0101092.
  59. Stergioulas, N., & Friedman, J. L. (1998). Nonaxisymmetric neutral modes in rotating relativistic stars. The Astrophysical Journal, 492, 301–322.  https://doi.org/10.1086/305030, arXiv:gr-qc/9705056.
  60. Surace, M., Kokkotas, K. D., & Pnigouras, P. (2016). The stochastic background of gravitational waves due to the f-mode instability in neutron stars. Astronomy & Astrophysics, 586, A86.  https://doi.org/10.1051/0004-6361/201527197, arXiv:1512.02502.ADSCrossRefGoogle Scholar
  61. Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. (1989). Nonradial oscillations of stars (2nd ed.). Tokyo: University of Tokyo Press. http://adsabs.harvard.edu/abs/1989nos.book....U.
  62. Usov, V. V. (1992). Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature, 357, 472–474.  https://doi.org/10.1038/357472a0.ADSCrossRefGoogle Scholar
  63. Wiringa, R. B., Fiks, V., & Fabrocini, A. (1988). Equation of state for dense nucleon matter. Physical Review C, 38, 1010–1037.  https://doi.org/10.1103/PhysRevC.38.1010.ADSCrossRefGoogle Scholar
  64. Woosley, S. E. (1993). Gamma-ray bursts from stellar mass accretion disks around black holes. The Astrophysical Journal, 405, 273–277.  https://doi.org/10.1086/172359.ADSCrossRefGoogle Scholar
  65. Yoshida, S., & Lee, U. (2000). Rotational modes of nonisentropic stars and the gravitational radiation-driven instability. The Astrophysical Journal Supplement Series, 129, 353–366.  https://doi.org/10.1086/313410, arXiv:astro-ph/0002300.ADSCrossRefGoogle Scholar
  66. Zhang, B., & Mészáros, P. (2001). Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar. The Astrophysical Journal, 552, L35–L38.  https://doi.org/10.1086/320255, arXiv:astro-ph/0011133.ADSCrossRefGoogle Scholar
  67. Zhu, X.-J., Fan, X.-L., & Zhu, Z.-H. (2011). Stochastic gravitational wave background from neutron star r-mode instability revisited. The Astrophysical Journal, 729, 59.  https://doi.org/10.1088/0004-637X/729/1/59, arXiv:1102.2786.ADSCrossRefGoogle Scholar
  68. Zink, B., Korobkin, O., Schnetter, E., & Stergioulas, N. (2010). Frequency band of the f-mode Chandrasekhar–Friedman–Schutz instability. Physical Review D, 81, 084055.  https://doi.org/10.1103/PhysRevD.81.084055, arXiv:1003.0779.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations