Advertisement

The f-mode Instability

  • Pantelis PnigourasEmail author
Chapter
  • 99 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

First, we will briefly review the studies about the equilibrium figure of a rotating, self-gravitating body (Sect. 3.1), which revealed that a star is not necessarily deformed by rotation into an oblate spheroid, but may also be shaped like a triaxial ellipsoid, should it rotate sufficiently fast. Depending on the assumed density profile, there is an upper limit on the maximum rotation that a star can support (Sect. 3.2), which determines whether it can actually admit such a state. The possible equilibrium figures were subsequently shown to be related to secular instabilities (Sect. 3.3), associated with damping mechanisms, like viscosity and gravitational radiation. Some intuition on the concept of a secular instability can be gained by means of simplistic mechanical examples (Sect. 3.4). Then, we shall discuss in detail the mechanism behind the gravitational-wave-driven secular instability, known as the Chandrasekhar–Friedman–Schutz (CFS) instability (Sect. 3.5), and how it sets in via various oscillation modes. Finally, we are going to see how viscosity affects the modes and counteracts the instability, giving rise to the so-called instability window (Sect. 3.6).

Keywords

Secular Instability Assumed Density Profile Gravitational Radiation Maclaurin Spheroids Jacobi Ellipsoids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alford, M. G., Mahmoodifar, S., & Schwenzer, K. (2010). Large amplitude behavior of the bulk viscosity of dense matter. Journal of Physics G, 37, 125202.  https://doi.org/10.1088/0954-3899/37/12/125202, arXiv:1005.3769.ADSCrossRefGoogle Scholar
  2. Andersson, N. (1998). A new class of unstable modes of rotating relativistic stars. The Astrophysical Journal, 502, 708–713.  https://doi.org/10.1086/305919, arXiv:gr-qc/9706075.ADSCrossRefGoogle Scholar
  3. Andersson, N. (2003). TOPICAL REVIEW: Gravitational waves from instabilities in relativistic stars. Classical Quantum Gravity, 20, 105. http://adsabs.harvard.edu/abs/2003CQGra..20R.105A, arXiv:astro-ph/0211057.ADSMathSciNetCrossRefGoogle Scholar
  4. Andersson, N., & Kokkotas, K. D. (2001). The R-mode instability in rotating neutron stars. International Journal of Modern Physics D, 10, 381–441.  https://doi.org/10.1142/S0218271801001062, arXiv:gr-qc/0010102.ADSCrossRefGoogle Scholar
  5. Balbinski, E., & Schutz, B. F. (1982). A puzzle concerning the quadrupole formula for gravitational radiation. Monthly Notices of the Royal Astronomical Society, 200, 43–46.  https://doi.org/10.1093/mnras/200.1.43P.ADSCrossRefGoogle Scholar
  6. Bildsten, L., & Ushomirsky, G. (2000). Viscous boundary-layer damping of r-modes in neutron stars. The Astrophysical Journal, 529, L33–L36.  https://doi.org/10.1086/312454, arXiv:astro-ph/9911155.ADSCrossRefGoogle Scholar
  7. Bodenheimer, P., & Ostriker, J. P. (1973). Rapidly rotating stars. VIII: Zero-viscosity polytropic sequences. The Astrophysical Journal, 180, 159–170.  https://doi.org/10.1086/151951.ADSCrossRefGoogle Scholar
  8. Bryan, G. H. (1889). The waves on a rotating liquid spheroid of finite ellipticity. Philosophical Transactions of the Royal Society of London A, 180, 187–219.  https://doi.org/10.1098/rsta.1889.0006.ADSCrossRefzbMATHGoogle Scholar
  9. Chandrasekhar, S. (1969). Ellipsoidal figures of equilibrium. The Silliman Foundation Lectures. New Haven: Yale University Press. http://adsabs.harvard.edu/abs/1969efe..book.....C.
  10. Chandrasekhar, S. (1970). Solutions of two problems in the theory of gravitational radiation. Physical Review Letters, 24, 611–615.  https://doi.org/10.1103/PhysRevLett.24.611.ADSCrossRefGoogle Scholar
  11. Chiu, H.-Y., & Salpeter, E. E. (1964). Surface x-ray emission from neutron stars. Physical Review Letters, 12, 413–415.  https://doi.org/10.1103/PhysRevLett.12.413.ADSCrossRefGoogle Scholar
  12. Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. (1992). Spin-up of a rapidly rotating star by angular momentum loss: Effects of general relativity. The Astrophysical Journal, 398, 203–223.  https://doi.org/10.1086/171849.ADSCrossRefGoogle Scholar
  13. Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. (1994). Rapidly rotating neutron stars in general relativity: Realistic equations of state. The Astrophysical Journal, 424, 823–845.  https://doi.org/10.1086/173934.ADSCrossRefGoogle Scholar
  14. Cutler, C., & Lindblom, L. (1987). The effect of viscosity on neutron star oscillations. The Astrophysical Journal, 314, 234–241.  https://doi.org/10.1086/165052.ADSCrossRefGoogle Scholar
  15. Cutler, C., Lindblom, L., & Splinter, R. J. (1990). Damping times for neutron star oscillations. The Astrophysical Journal, 363, 603–611.  https://doi.org/10.1086/169370.ADSCrossRefGoogle Scholar
  16. Dedekind, R. (1861). Zusatz zu der vorstehenden Abhandlung. Journal für die Reine und Angewandte Mathematik, 58, 217–228. http://eudml.org/doc/147810.MathSciNetCrossRefGoogle Scholar
  17. Detweiler, S. L., & Lindblom, L. (1977). On the evolution of the homogeneous ellipsoidal figures. The Astrophysical Journal, 213, 193–199.  https://doi.org/10.1086/155144.ADSMathSciNetCrossRefGoogle Scholar
  18. Dirichlet, P. G. L. (1861). Untersuchungen über ein Problem der Hydrodynamik. Journal für die Reine und Angewandte Mathematik, 58, 181–216. http://eudml.org/doc/147809.
  19. Doneva, D. D., Gaertig, E., Kokkotas, K. D., & Krüger, C. (2013). Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state. Physical Review D, 88, 044052.  https://doi.org/10.1103/PhysRevD.88.044052, arXiv:1305.7197.
  20. Doneva, D. D., Kokkotas, K. D., & Pnigouras, P. (2015). Gravitational wave afterglow in binary neutron star mergers. Physical Review D, 92, 104040.  https://doi.org/10.1103/PhysRevD.92.104040, arXiv:1510.00673.
  21. Epstein, R. I. (1988). Acoustic properties of neutron stars. The Astrophysical Journal, 333, 880–894.  https://doi.org/10.1086/166797.ADSCrossRefGoogle Scholar
  22. Flowers, E., & Itoh, N. (1979). Transport properties of dense matter. II. The Astrophysical Journal, 230, 847–858.  https://doi.org/10.1086/157145.ADSCrossRefGoogle Scholar
  23. Friedman, J. L., & Morsink, S. M. (1998). Axial instability of rotating relativistic stars. The Astrophysical Journal, 502, 714–720.  https://doi.org/10.1086/305920, arXiv:gr-qc/9706073.ADSCrossRefGoogle Scholar
  24. Friedman, J. L., & Schutz, B. F. (1978a). Lagrangian perturbation theory of nonrelativistic fluids. The Astrophysical Journal, 221, 937–957.  https://doi.org/10.1086/156098.ADSMathSciNetCrossRefGoogle Scholar
  25. Friedman, J. L., & Schutz, B. F. (1978b). Secular instability of rotating Newtonian stars. The Astrophysical Journal, 222, 281–296.  https://doi.org/10.1086/156143.ADSCrossRefGoogle Scholar
  26. Gaertig, E., & Kokkotas, K. D. (2009). Relativistic g-modes in rapidly rotating neutron stars. Physical Review D, 80, 064026.  https://doi.org/10.1103/PhysRevD.80.064026, arXiv:0905.0821.
  27. Gaertig, E., Glampedakis, K., Kokkotas, K. D., & Zink, B. (2011). f-mode instability in relativistic neutron stars. Physical Review Letters, 107, 101102.  https://doi.org/10.1103/PhysRevLett.107.101102, arXiv:1106.5512.
  28. Gamow, G., & Schoenberg, M. (1941). Neutrino theory of stellar collapse. Physical Review, 59, 539–547.  https://doi.org/10.1103/PhysRev.59.539.ADSCrossRefGoogle Scholar
  29. Gusakov, M. E., Kantor, E. M., Chugunov, A. I., & Gualtieri, L. (2013). Dissipation in relativistic superfluid neutron stars. Monthly Notices of the Royal Astronomical Society428, 1518–1536.  https://doi.org/10.1093/mnras/sts129, arXiv:1211.2452.ADSCrossRefGoogle Scholar
  30. Haensel, P. (1995). URCA processes in dense matter and neutron star cooling. Space Science Reviews, 74, 427–436.  https://doi.org/10.1007/BF00751429.ADSCrossRefGoogle Scholar
  31. Haensel, P., & Schaeffer, R. (1992). Bulk viscosity of hot-neutron-star matter from direct URCA processes. Physical Review D, 45, 4708–4712.  https://doi.org/10.1103/PhysRevD.45.4708.ADSCrossRefGoogle Scholar
  32. Haensel, P., Potekhin, A. Y., & Yakovlev, D. G. (2007). Neutron Stars 1: Equation of State and Structure, Vol. 326 of Astrophysics and Space Science Library. New York: Springer. http://adsabs.harvard.edu/abs/2007ASSL..326.....H.
  33. Ipser, J. R., & Lindblom, L. (1990). The oscillations of rapidly rotating Newtonian stellar models. The Astrophysical Journal, 355, 226–240.  https://doi.org/10.1086/168757.ADSCrossRefGoogle Scholar
  34. Ipser, J. R., & Lindblom, L. (1991). The oscillations of rapidly rotating Newtonian stellar models. II: Dissipative effects. The Astrophysical Journal, 373, 213–221. https://doi.org/10.1086/170039.ADSCrossRefGoogle Scholar
  35. Jacobi, C. G. J. (1834). Über die Figur des Gleichgewichts. Annalen der Physik, 109, 229–233.  https://doi.org/10.1002/andp.18341090808.ADSCrossRefGoogle Scholar
  36. James, R. A. (1964). The structure and stability of rotating gas masses. The Astrophysical Journal, 140, 552.  https://doi.org/10.1086/147949.ADSMathSciNetCrossRefGoogle Scholar
  37. Jeans, J. H. (1919). Problems of cosmogony and stellar dynamics. Cambridge, England: Cambridge University Press. http://adsabs.harvard.edu/abs/1919pcsd.book.....J.
  38. Jeans, J. H. (1929). Astronomy and cosmogony (2nd ed.). Cambridge, England: Cambridge University Press. http://adsabs.harvard.edu/abs/1919pcsd.book.....J.
  39. Kokkotas, K. D., Ruoff, J., & Andersson, N. (2004). w-mode instability of ultracompact relativistic stars. Physical Review D, 70, 043003.  https://doi.org/10.1103/PhysRevD.70.043003, arXiv:astro-ph/0212429.
  40. Krüger, C., Gaertig, E., & Kokkotas, K. D. (2010). Oscillations and instabilities of fast and differentially rotating relativistic stars. Physical Review D, 81, 084019.  https://doi.org/10.1103/PhysRevD.81.084019, arXiv:0911.2764.
  41. Lai, D. (1999). Secular instability of g-modes in rotating neutron stars. Monthly Notices of the Royal Astronomical Society, 307, 1001–1007.  https://doi.org/10.1046/j.1365-8711.1999.02723.x, arXiv:astro-ph/9806378.ADSCrossRefGoogle Scholar
  42. Lai, D., & Shapiro, S. L. (1995). Gravitational radiation from rapidly rotating nascent neutron stars. The Astrophysical Journal, 442, 259–272.  https://doi.org/10.1086/175438, arXiv:astro-ph/9408053.ADSCrossRefGoogle Scholar
  43. Lai, D., Rasio, F. A., & Shapiro, S. L. (1993). Ellipsoidal figures of equilibrium: Compressible models. The Astrophysical Journal Supplement Series, 88, 205–252.  https://doi.org/10.1086/191822.ADSCrossRefGoogle Scholar
  44. Lai, D., Rasio, F. A., & Shapiro, S. L. (1994). Hydrodynamics of rotating stars and close binary interactions: Compressible ellipsoid models. The Astrophysical Journal, 437, 742–769.  https://doi.org/10.1086/175036, arXiv:astro-ph/9404031.ADSCrossRefGoogle Scholar
  45. Lamb, H. (1908). On kinetic stability. Proceedings of the Royal Society of London. Series A, 80, 168–177.  https://doi.org/10.1098/rspa.1908.0013.ADSCrossRefzbMATHGoogle Scholar
  46. Lattimer, J. M., Prakash, M., Pethick, C. J., & Haensel, P. (1991). Direct URCA process in neutron stars. Physical Review Letters, 66, 2701–2704.  https://doi.org/10.1103/PhysRevLett.66.2701.ADSCrossRefGoogle Scholar
  47. Lindblom, L. (1995). Critical angular velocities of rotating neutron stars. The Astrophysical Journal, 438, 265–268.  https://doi.org/10.1086/175071.ADSCrossRefGoogle Scholar
  48. Lindblom, L., & Ipser, J. R. (1999). Generalized r-modes of the Maclaurin spheroids. Physical Review D, 59, 044009.  https://doi.org/10.1103/PhysRevD.59.044009, arXiv:gr-qc/9807049.
  49. Lindblom, L., & Detweiler, S. L. (1977). On the secular instabilities of the Maclaurin spheroids. The Astrophysical Journal, 211, 565–567.  https://doi.org/10.1086/154964.ADSCrossRefGoogle Scholar
  50. Lindblom, L., Owen, B. J., & Morsink, S. M. (1998). Gravitational radiation instability in hot young neutron stars. Physical Review Letters, 80, 4843–4846.  https://doi.org/10.1103/PhysRevLett.80.4843, arXiv:gr-qc/9803053.ADSCrossRefGoogle Scholar
  51. Lindblom, L., & Mendell, G. (1995). Does gravitational radiation limit the angular velocities of superfluid neutron stars? The Astrophysical Journal, 444, 804–809.  https://doi.org/10.1086/175653.ADSCrossRefGoogle Scholar
  52. Lockitch, K. H., & Friedman, J. L. (1999). Where are the r-modes of isentropic stars? The Astrophysical Journal, 521, 764–788.  https://doi.org/10.1086/307580, arXiv:gr-qc/9812019.ADSCrossRefGoogle Scholar
  53. Maclaurin, C. (1742). A Treatise of Fluxions. Edinburgh: T. W. and T. Ruddimans. https://catalog.hathitrust.org/Record/000615723.
  54. Meyer, C. (1842). De Aequilibrii formis Ellipsoidicis. Journal für die reine und angewandte Mathematik, 24, 44–59. http://eudml.org/doc/183244.MathSciNetCrossRefGoogle Scholar
  55. Miller, B. D. (1974). The effect of gravitational radiation-reaction on the evolution of the Riemann S-type ellipsoids. The Astrophysical Journal, 187, 609–620.  https://doi.org/10.1086/152671.ADSMathSciNetCrossRefGoogle Scholar
  56. Ostriker, J. P., & Bodenheimer, P. (1973). On the oscillations and stability of rapidly rotating stellar models. III: Zero-viscosity polytropic sequences. The Astrophysical Journal, 180, 171–180.  https://doi.org/10.1086/151952.ADSCrossRefGoogle Scholar
  57. Passamonti, A., Haskell, B., Andersson, N., Jones, D. I., & Hawke, I. (2009). Oscillations of rapidly rotating stratified neutron stars. Monthly Notices of the Royal Astronomical Society, 394, 730–741.  https://doi.org/10.1111/j.1365-2966.2009.14408.x, arXiv:0807.3457.ADSCrossRefGoogle Scholar
  58. Poincaré, H. (1885). Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Mathematica, 7, 259–380.  https://doi.org/10.1007/BF02402204.MathSciNetCrossRefzbMATHGoogle Scholar
  59. Press, W. H., & Teukolsky, S. A. (1973). On the evolution of the secularly unstable viscous Maclaurin spheroids. The Astrophysical Journal, 181, 513–518.  https://doi.org/10.1086/152066.ADSMathSciNetCrossRefGoogle Scholar
  60. Riemann, B. (1861). Ein Beitrag zu den Untersuchungen über die Bewegungen eines gleichartigen flüssigen Ellipsoids. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 9, 3–36. http://eudml.org/doc/135728.
  61. Roberts, P. H., & Stewartson, K. (1963). On the stability of a Maclaurin spheroid of small viscosity. The Astrophysical Journal, 137, 777.  https://doi.org/10.1086/147555.ADSCrossRefzbMATHGoogle Scholar
  62. Sawyer, R. F. (1989). Bulk viscosity of hot neutron-star matter and the maximum rotation rates of neutron stars. Physical Review D, 39, 3804–3806.  https://doi.org/10.1103/PhysRevD.39.3804.ADSCrossRefGoogle Scholar
  63. Shapiro, S. L., & Teukolsky, S. A. (1983). Black holes, white dwarfs, and neutron stars: The physics of compact objects. New York: Wiley. http://adsabs.harvard.edu/abs/1983bhwd.book.....S.CrossRefGoogle Scholar
  64. Shapiro, S. L., Teukolsky, S. A., & Nakamura, T. (1990). Spin-up of a rapidly rotating star by angular momentum loss. The Astrophysical Journal, 357, L17–L20. http://adsabs.harvard.edu/abs/1928asco.book.....J.ADSCrossRefGoogle Scholar
  65. Shternin, P. S., & Yakovlev, D. G. (2008). Shear viscosity in neutron star cores. Physical Review D, 78, 063006.  https://doi.org/10.1103/PhysRevD.78.063006, arXiv:0808.2018.
  66. Stergioulas, N., & Friedman, J. L. (1998). Nonaxisymmetric neutral modes in rotating relativistic stars. The Astrophysical Journal, 492, 301–322.  https://doi.org/10.1086/305030, arXiv:gr-qc/9705056.ADSCrossRefGoogle Scholar
  67. Tassoul, J.-L. (2000). Stellar rotation (vol. 36). Cambridge Astrophysics Series. New York: Cambridge University Press. http://adsabs.harvard.edu/abs/2000stro.book.....T.
  68. Thomson, W., & Tait, P. G. (1883). Treatise on natural philosophy (vol. 2, 2nd ed.). Cambridge, England: Cambridge University Press.  https://doi.org/10.1017/CBO9780511703935.
  69. Thorne, K. S. (1969). Nonradial pulsation of general-relativistic stellar models. IV: The weak-field limit. The Astrophysical Journal, 158, 997.  https://doi.org/10.1086/150259.ADSCrossRefGoogle Scholar
  70. Thorne, K. S. (1980). Multipole expansions of gravitational radiation. Reviews of Modern Physics, 52, 299–340.  https://doi.org/10.1103/RevModPhys.52.299.ADSMathSciNetCrossRefGoogle Scholar
  71. Wiringa, R. B., Fiks, V., & Fabrocini, A. (1988). Equation of state for dense nucleon matter. Physical Review C, 38, 1010–1037.  https://doi.org/10.1103/PhysRevC.38.1010.ADSCrossRefGoogle Scholar
  72. Yoshida, S., & Eriguchi, Y. (1995). Gravitational radiation driven secular instability of rotating polytropes. The Astrophysical Journal, 438, 830–840.  https://doi.org/10.1086/175126.ADSCrossRefGoogle Scholar
  73. Zink, B., Korobkin, O., Schnetter, E., & Stergioulas, N. (2010). Frequency band of the f-mode Chandrasekhar-Friedman-Schutz instability. Physical Review D, 81, 084055.  https://doi.org/10.1103/PhysRevD.81.084055, arXiv:1003.0779.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations