Advertisement

Introduction

  • Pantelis PnigourasEmail author
Chapter
  • 100 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

We present a brief history of the field and the reasons which motivate such an enterprise, starting from the concept of asteroseismology and how it can be applied in neutron stars, so that the equation of state of dense nuclear matter is determined. Then, we discuss neutron stars as gravitational-wave sources, focusing on the presence of unstable oscillation modes and reviewing their significance both for gravitational-wave asteroseismology and neutron star evolution.

References

  1. Aasi, J., et al. (2015a). Advanced LIGO. Classical Quantum Gravity, 32, 074001.  https://doi.org/10.1088/0264-9381/32/7/074001, arXiv:1411.4547.
  2. Aasi, J., et al. (2015b). Searches for continuous gravitational waves from nine young supernova remnants. The Astrophysical Journal, 813, 39.  https://doi.org/10.1088/0004-637X/813/1/39, arXiv:1412.5942.ADSCrossRefGoogle Scholar
  3. Abbott, B. P., et al. (2016a). GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical Review Letters, 116, 241103.  https://doi.org/10.1103/PhysRevLett.116.241103.
  4. Abbott, B. P., et al. (2016b). Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 061102.  https://doi.org/10.1103/PhysRevLett.116.061102, arXiv:1602.03837.
  5. Abramovici, A., Althouse, W. E., Drever, R. W. P., Gürsel, Y., Kawamura, S., & Raab, F. J., et al. (1992). LIGO: The laser interferometer gravitational-wave observatory. Science, 256, 325–333.  https://doi.org/10.1126/science.256.5055.325.ADSCrossRefGoogle Scholar
  6. Acernese, F., et al. (2015). Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Gravity, 32, 024001.  https://doi.org/10.1088/0264-9381/32/2/024001, arXiv:1408.3978.ADSCrossRefGoogle Scholar
  7. Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. (2010). Asteroseismology. Astronomy and astrophysics library. New York: Springer. http://adsabs.harvard.edu/abs/2010aste.book....A.CrossRefGoogle Scholar
  8. Alford, M. G., & Schwenzer, K. (2014a). Gravitational wave emission and spin-down of young pulsars. The Astrophysical Journal, 781, 26.  https://doi.org/10.1088/0004-637X/781/1/26, arXiv:1210.6091.ADSCrossRefGoogle Scholar
  9. Alford, M. G., & Schwenzer, K. (2014b). What the timing of millisecond pulsars can teach us about their interior. Physical Review Letters, 113, 251102.  https://doi.org/10.1103/PhysRevLett.113.251102, arXiv:1310.3524.
  10. Alford, M. G., & Schwenzer, K. (2015). Gravitational wave emission from oscillating millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 446, 3631–3641.  https://doi.org/10.1093/mnras/stu2361, arXiv:1403.7500.ADSCrossRefGoogle Scholar
  11. Alford, M. G., Mahmoodifar, S., & Schwenzer, K. (2012). Viscous damping of r-modes: Large amplitude saturation. Physical Review D, 85, 044051.  https://doi.org/10.1103/PhysRevD.85.044051, arXiv:1103.3521.
  12. Amaro-Seoane, P., et al. (2012). Low-frequency gravitational-wave science with eLISA/NGO. Classical Quantum Gravity, 29, 124016.  https://doi.org/10.1088/0264-9381/29/12/124016, arXiv:1202.0839.ADSCrossRefGoogle Scholar
  13. Andersson, N. (1998). A new class of unstable modes of rotating relativistic stars. The Astrophysical Journal, 502, 708–713.  https://doi.org/10.1086/305919, arXiv:gr-qc/9706075.ADSCrossRefGoogle Scholar
  14. Andersson, N., & Kokkotas, K. D. (1996). Gravitational waves and pulsating stars: What can we learn from future observations? Physical Review Letters, 77, 4134–4137.  https://doi.org/10.1103/PhysRevLett.77.4134, arXiv:gr-qc/9610035.ADSCrossRefGoogle Scholar
  15. Andersson, N., & Kokkotas, K. D. (1998). Towards gravitational wave asteroseismology. Monthly Notices of the Royal Astronomical Society, 299, 1059–1068.  https://doi.org/10.1046/j.1365-8711.1998.01840.x, arXiv:gr-qc/9711088.ADSCrossRefGoogle Scholar
  16. Andersson, N., & Kokkotas, K. D. (2001). The r-mode instability in rotating neutron stars. International Journal of Modern Physics D, 10, 381–441.  https://doi.org/10.1142/S0218271801001062, arXiv:gr-qc/0010102.ADSCrossRefGoogle Scholar
  17. Andersson, N., Ferrari, V., Jones, D. I., Kokkotas, K. D., Krishnan, B., & Read, J. S., et al. (2011). Gravitational waves from neutron stars: promises and challenges. General Relativity and Gravitation, 43, 409–436.  https://doi.org/10.1007/s10714-010-1059-4, arXiv:0912.0384.ADSCrossRefzbMATHGoogle Scholar
  18. Andersson, N., Jones, D. I., Kokkotas, K. D., & Stergioulas, N. (2000). R-mode runaway and rapidly rotating neutron stars. The Astrophysical Journal, 534, L75–L78.  https://doi.org/10.1086/312643, arXiv:astro-ph/0002114.ADSCrossRefGoogle Scholar
  19. Andersson, N., Kokkotas, K., & Schutz, B. F. (1999a). Gravitational radiation limit on the spin of young neutron stars. The Astrophysical Journal, 510, 846–853.  https://doi.org/10.1086/306625, arXiv:astro-ph/9805225.ADSCrossRefGoogle Scholar
  20. Andersson, N., Kokkotas, K. D., & Stergioulas, N. (1999b). On the relevance of the r-mode instability for accreting neutron stars and white dwarfs. The Astrophysical Journal, 516, 307–314.  https://doi.org/10.1086/307082, arXiv:astro-ph/9806089.ADSCrossRefGoogle Scholar
  21. Antoniadis, J., et al. (2013). A massive pulsar in a compact relativistic binary. Science, 340, 448.  https://doi.org/10.1126/science.1233232, arXiv:1304.6875.CrossRefGoogle Scholar
  22. Arras, P., Flanagan, É. É., Morsink, S. M., Schenk, A. K., Teukolsky, S. A., & Wasserman, I. (2003). Saturation of the r-mode instability. The Astrophysical Journal, 591, 1129–1151.  https://doi.org/10.1086/374657, arXiv:astro-ph/0202345.ADSCrossRefGoogle Scholar
  23. Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., & Sekiguchi, T., et al. (2013). Interferometer design of the KAGRA gravitational wave detector. Physical Review D, 88, 043007.  https://doi.org/10.1103/PhysRevD.88.043007, arXiv:1306.6747.
  24. Baade, W., & Zwicky, F. (1934a). On super-novae. Proceedings of the National Academy of Sciences of the United States of America, 20, 254–259.  https://doi.org/10.1073/pnas.20.5.254.ADSCrossRefGoogle Scholar
  25. Baade, W., & Zwicky, F. (1934b). Cosmic rays from super-novae. Proceedings of the National Academy of Sciences of the United States of America, 20, 259–263.  https://doi.org/10.1073/pnas.20.5.259.ADSCrossRefGoogle Scholar
  26. Bauswein, A., & Janka, H.-T. (2012). Measuring neutron-star properties via gravitational waves from neutron-star mergers. Physical Review Letters, 108, 011101.  https://doi.org/10.1103/PhysRevLett.108.011101, arXiv:1106.1616.
  27. Bauswein, A., Janka, H.-T., Hebeler, K., & Schwenk, A. (2012). Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers. Physical Review D, 86, 063001.  https://doi.org/10.1103/PhysRevD.86.063001, arXiv:1204.1888.
  28. Bauswein, A., Stergioulas, N., & Janka, H.-T. (2014). Revealing the high-density equation of state through binary neutron star mergers. Physical Review D, 90, 023002.  https://doi.org/10.1103/PhysRevD.90.023002, arXiv:1403.5301.
  29. Benhar, O., Ferrari, V., & Gualtieri, L. (2004). Gravitational wave asteroseismology reexamined. Physical Review D, 70, 124015.  https://doi.org/10.1103/PhysRevD.70.124015, arXiv:astro-ph/0407529.
  30. Bildsten, L. (1998). Gravitational radiation and rotation of accreting neutron stars. The Astrophysical Journal, 501, L89–L93.  https://doi.org/10.1086/311440, arXiv:astro-ph/9804325.ADSCrossRefGoogle Scholar
  31. Bondarescu, R., & Wasserman, I. (2013). Nonlinear Development of the r-mode Instability and the Maximum Rotation Rate of Neutron Stars. The Astrophysical Journal, 778, 9.  https://doi.org/10.1088/0004-637X/778/1/9, arXiv:1305.2335.ADSCrossRefGoogle Scholar
  32. Bondarescu, R., Teukolsky, S. A., & Wasserman, I. (2007). Spin evolution of accreting neutron stars: Nonlinear development of the r-mode instability. Physical Review D, 76, 064019.  https://doi.org/10.1103/PhysRevD.76.064019, arXiv:0704.0799.
  33. Bondarescu, R., Teukolsky, S. A., & Wasserman, I. (2009). Spinning down newborn neutron stars: Nonlinear development of the r-mode instability. Physical Review D, 79, 104003.  https://doi.org/10.1103/PhysRevD.79.104003, arXiv:0809.3448.
  34. Brink, J., Teukolsky, S. A., & Wasserman, I. (2004a). Nonlinear coupling network to simulate the development of the r-mode instability in neutron stars. I. Construction. Physical Review D, 70, 124017.  https://doi.org/10.1103/PhysRevD.70.124017, arXiv:gr-qc/0409048.
  35. Brink, J., Teukolsky, S. A., & Wasserman, I. (2004b). Nonlinear couplings of r-modes: Energy transfer and saturation amplitudes at realistic timescales. Physical Review D, 70, 121501.  https://doi.org/10.1103/PhysRevD.70.121501, arXiv:gr-qc/0406085.
  36. Brink, J., Teukolsky, S. A., & Wasserman, I. (2005). Nonlinear coupling network to simulate the development of the r mode instability in neutron stars II. Dynamics. Physical Review D, 71, 064029.  https://doi.org/10.1103/PhysRevD.71.064029, arXiv:gr-qc/0410072.
  37. Caron, B., et al. (1997). The Virgo interferometer. Classical Quantum Gravity, 14, 1461–1469.  https://doi.org/10.1088/0264-9381/14/6/011.
  38. Chakrabarty, D., Morgan, E. H., Muno, M. P., Galloway, D. K., Wijnands, R., & van der Klis, M., et al. (2003). Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Nature, 424, 42–44.  https://doi.org/10.1038/nature01732, arXiv:astro-ph/0307029.ADSCrossRefGoogle Scholar
  39. Chandrasekhar, S. (1970). Solutions of two problems in the theory of gravitational radiation. Physical Review Letters, 24, 611–615.  https://doi.org/10.1103/PhysRevLett.24.611.ADSCrossRefGoogle Scholar
  40. Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. (1992). Spin-up of a rapidly rotating star by angular momentum loss: Effects of general relativity. The Astrophysical Journal, 398, 203–223.  https://doi.org/10.1086/171849.ADSCrossRefGoogle Scholar
  41. Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. (1994). Rapidly rotating neutron stars in general relativity: Realistic equations of state. The Astrophysical Journal, 424, 823–845.  https://doi.org/10.1086/173934.ADSCrossRefGoogle Scholar
  42. Cowling, T. G. (1941). The non-radial oscillations of polytropic stars. Monthly Notices of the Royal Astronomical Society, 101, 367.  https://doi.org/10.1093/mnras/101.8.367.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. Damour, T. (2015). 1974: The discovery of the first binary pulsar. Classical Quantum Gravity, 32, 124009.  https://doi.org/10.1088/0264-9381/32/12/124009, arXiv:1411.3930.ADSCrossRefMathSciNetGoogle Scholar
  44. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. (2010). A two-solar-mass neutron star measured using Shapiro delay. Nature, 467, 1081–1083.  https://doi.org/10.1038/nature09466, arXiv:1010.5788.ADSCrossRefGoogle Scholar
  45. Deubner, F.-L. (1975). Observations of low wavenumber nonradial eigenmodes of the sun. Astronomy & Astrophysics, 44, 371–375. http://adsabs.harvard.edu/abs/1975A%26A....44.371D.
  46. Doneva, D. D. & Kokkotas, K. D. (2015). Asteroseismology of rapidly rotating neutron stars: An alternative approach. Physical Review D, 92, 124004.  https://doi.org/10.1103/PhysRevD.92.124004, arXiv:1507.06606.
  47. Doneva, D. D., Gaertig, E., Kokkotas, K. D., & Krüger, C. (2013). Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state. Physical Review D, 88, 044052.  https://doi.org/10.1103/PhysRevD.88.044052, arXiv:1305.7197.
  48. Doneva, D. D., Kokkotas, K. D. & Pnigouras, P. (2015). Gravitational wave afterglow in binary neutron star mergers. Physical Review D, 92, 104040.  https://doi.org/10.1103/PhysRevD.92.104040, arXiv:1510.00673.
  49. Duncan, R. C., & Thompson, C. (1992). Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. The Astrophysical Journal, 392, L9–L13.  https://doi.org/10.1086/186413.ADSCrossRefGoogle Scholar
  50. Eddington, A. S. (1926). The internal constitution of the stars. Cambridge science classics. Cambridge: Cambridge University Press.  https://doi.org/10.1017/CBO9780511600005.
  51. Einstein, A. (1916). Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1, 688. http://adsabs.harvard.edu/abs/1916SPAW.......688E.
  52. Einstein, A. (1918). Über Gravitationswellen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1, 154. http://adsabs.harvard.edu/abs/1918SPAW.......154E.
  53. Ferrari, V. (2010). Probing the physics of neutron stars with gravitational waves. Classical Quantum Gravity, 27, 194006.  https://doi.org/10.1088/0264-9381/27/19/194006.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. Friedman, J. L., & Morsink, S. M. (1998). Axial instability of rotating relativistic stars. The Astrophysical Journal, 502, 714–720.  https://doi.org/10.1086/305920, arXiv:gr-qc/9706073.ADSCrossRefGoogle Scholar
  55. Friedman, J. L., & Schutz, B. F. (1978a). Lagrangian perturbation theory of nonrelativistic fluids. The Astrophysical Journal, 221, 937–957.  https://doi.org/10.1086/156098.ADSMathSciNetCrossRefGoogle Scholar
  56. Friedman, J. L., & Schutz, B. F. (1978b). Secular instability of rotating Newtonian stars. The Astrophysical Journal, 222, 281–296.  https://doi.org/10.1086/156143.ADSCrossRefGoogle Scholar
  57. Friedman, J. L. (1983). Upper limit on the frequency of pulsars. Physical Review Letters, 51, 11–14.  https://doi.org/10.1103/PhysRevLett.51.11.ADSCrossRefGoogle Scholar
  58. Gaertig, E., & Kokkotas, K. D. (2011). Gravitational wave asteroseismology with fast rotating neutron stars. Physical Review D, 83, 064031.  https://doi.org/10.1103/PhysRevD.83.064031, arXiv:1005.5228.
  59. Glendenning, N. K. (2000). Compact stars: nuclear physics, particle physics, and general relativity (2nd ed.). Astronomy and astrophysics library. New York: Springer. http://adsabs.harvard.edu/abs/2000csnp.conf....G.CrossRefzbMATHGoogle Scholar
  60. Gualtieri, L., Ciolfi, R., & Ferrari, V. (2011). Structure, deformations and gravitational wave emission of magnetars. Classical Quantum Gravity, 28, 114014.  https://doi.org/10.1088/0264-9381/28/11/114014, arXiv:1011.2778.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. Gusakov, M. E., Chugunov, A. I., & Kantor, E. M. (2014a). Explaining observations of rapidly rotating neutron stars in low-mass x-ray binaries. Physical Review D, 90, 063001.  https://doi.org/10.1103/PhysRevD.90.063001, arXiv:1305.3825.
  62. Gusakov, M. E., Chugunov, A. I., & Kantor, E. M. (2014b). Instability windows and evolution of rapidly rotating neutron stars. Physical Review Letters, 112, 151101.  https://doi.org/10.1103/PhysRevLett.112.151101, arXiv:1310.8103.
  63. Haskell, B., Glampedakis, K., & Andersson, N. (2014). A new mechanism for saturating unstable r modes in neutron stars. Monthly Notices of the Royal Astronomical Society, 441, 1662–1668.  https://doi.org/10.1093/mnras/stu535. arXiv:1307.0985.ADSCrossRefGoogle Scholar
  64. Heger, A., Langer, N., & Woosley, S. E. (2000). Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. The Astrophysical Journal, 528, 368–396.  https://doi.org/10.1086/308158, arXiv:astro-ph/9904132.ADSCrossRefGoogle Scholar
  65. Hessels, J. W. T., Ransom, S. M., Stairs, I. H., Freire, P. C. C., Kaspi, V. M., & Camilo, F. (2006). A radio pulsar spinning at 716 Hz. Science, 311, 1901–1904.  https://doi.org/10.1126/science.1123430, arXiv:astro-ph/0601337.ADSCrossRefGoogle Scholar
  66. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. (1968). Observation of a rapidly pulsating radio source. Nature, 217, 709–713.  https://doi.org/10.1038/217709a0.ADSCrossRefGoogle Scholar
  67. Hobbs, G., et al. (2010). The international pulsar timing array project: Using pulsars as a gravitational wave detector. Classical Quantum Gravity, 27, 084013.  https://doi.org/10.1088/0264-9381/27/8/084013, arXiv:0911.5206.ADSCrossRefGoogle Scholar
  68. Hulse, R. A., & Taylor, J. H. (1975). Discovery of a pulsar in a binary system. The Astrophysical Journal, 195, L51–L53.  https://doi.org/10.1086/181708.ADSCrossRefGoogle Scholar
  69. Hurley, K., Boggs, S. E., Smith, D. M., Duncan, R. C., Lin, R., & Zoglauer, A., et al. (2005). An exceptionally bright flare from SGR 1806–20 and the origins of short-duration \(\gamma \)-ray bursts. Nature, 434, 1098–1103.  https://doi.org/10.1038/nature03519, arXiv:astro-ph/0502329.ADSCrossRefGoogle Scholar
  70. Hurley, K., Cline, T., Mazets, E., Barthelmy, S., Butterworth, P., & Marshall, F., et al. (1999). A giant periodic flare from the soft \(\gamma \)-ray repeater SGR1900+14. Nature, 397, 41–43.  https://doi.org/10.1038/16199, arXiv:astro-ph/9811443.ADSCrossRefGoogle Scholar
  71. Ipser, J. R., & Lindblom, L. (1990). The oscillations of rapidly rotating Newtonian stellar models. The Astrophysical Journal, 355, 226–240.  https://doi.org/10.1086/168757.ADSCrossRefGoogle Scholar
  72. Ipser, J. R., & Lindblom, L. (1991). The oscillations of rapidly rotating Newtonian stellar models II. Dissipative effects. The Astrophysical Journal, 373, 213–221.  https://doi.org/10.1086/170039.ADSCrossRefGoogle Scholar
  73. Jones, D. I. (2002). Gravitational waves from rotating strained neutron stars. Classical Quantum Gravity, 19, 1255–1265.  https://doi.org/10.1088/0264-9381/19/7/304, arXiv:gr-qc/0111007.ADSCrossRefzbMATHGoogle Scholar
  74. Kastaun, W. (2011). Nonlinear decay of r modes in rapidly rotating neutron stars. Physical Review D, 84, 124036.  https://doi.org/10.1103/PhysRevD.84.124036, arXiv:1109.4839.
  75. Kastaun, W., Willburger, B., & Kokkotas, K. D. (2010). Saturation amplitude of the f-mode instability. Physical Review D, 82, 104036.  https://doi.org/10.1103/PhysRevD.82.104036, arXiv:1006.3885.
  76. Kiziltan, B., Kottas, A., De Yoreo, M., & Thorsett, S. E. (2013). The neutron star mass distribution. The Astrophysical Journal, 778, 66.  https://doi.org/10.1088/0004-637X/778/1/66, arXiv:1011.4291.ADSCrossRefGoogle Scholar
  77. Kokkotas, K. D. & Schwenzer, K. (2016). R-mode astronomy. The European Physical Journal A, 52, 38.  https://doi.org/10.1140/epja/i2016-16038-9, arXiv:1510.07051.
  78. Kokkotas, K. D., & Stergioulas, N. (2006). Gravitational waves from compact sources. In A. M. Mourão, M. Pimenta, R. Potting & P. M. Sá (Eds.), Proceedings of the Fifth International Workshop “New Worlds in Astroparticle Physics”, Faro, Portugal. arXiv:gr-qc/0506083.
  79. Kokkotas, K. D., Apostolatos, T. A., & Andersson, N. (2001). The inverse problem for pulsating neutron stars: A ‘fingerprint analysis’ for the supranuclear equation of state. Monthly Notices of the Royal Astronomical Society, 320, 307–315.  https://doi.org/10.1046/j.1365-8711.2001.03945.x, arXiv:gr-qc/9901072.ADSCrossRefGoogle Scholar
  80. Kokkotas, K. D., & Schutz, B. F. (1986). Normal modes of a model radiating system. General Relativity and Gravitation, 18, 913–921.  https://doi.org/10.1007/BF00773556.ADSCrossRefzbMATHGoogle Scholar
  81. Kokkotas, K. D., & Schutz, B. F. (1992). W-modes: A new family of normal modes of pulsating relativistic Stars. Monthly Notices of the Royal Astronomical Society, 255, 119–128.  https://doi.org/10.1093/mnras/255.1.119.ADSCrossRefGoogle Scholar
  82. Lasky, P. D., Haskell, B., Ravi, V., Howell, E. J., & Coward, D. M. (2014). Nuclear equation of state from observations of short gamma-ray burst remnants. Physical Review D, 89, 047302.  https://doi.org/10.1103/PhysRevD.89.047302, arXiv:1311.1352.
  83. Lattimer, J. M. (2012). The nuclear equation of state and neutron star masses. Annual Review of Nuclear and Particle Science, 62, 485–515.  https://doi.org/10.1146/annurev-nucl-102711-095018, arXiv:1305.3510.ADSCrossRefGoogle Scholar
  84. Lattimer, J. M., & Prakash, M. (2007). Neutron star observations: Prognosis for equation of state constraints. Physics Reports, 442, 109–165.  https://doi.org/10.1016/j.physrep.2007.02.003, arXiv:astro-ph/0612440.ADSCrossRefGoogle Scholar
  85. Ledoux, P., & Walraven, T. (1958). Variable stars. Encyclopedia of physics (Handbuch der Physik) (Vol. 51, pp. 353–604). Berlin: Springer. http://adsabs.harvard.edu/abs/1958HDP....51.353L.CrossRefGoogle Scholar
  86. Ledoux, P. (1951). The nonradial oscillations of gaseous stars and the problem of beta Canis Majoris. The Astrophysical Journal, 114, 373.  https://doi.org/10.1086/145477.ADSCrossRefGoogle Scholar
  87. Leibacher, J. W., & Stein, R. F. (1971). A new description of the solar five-minute oscillation. Astrophysical Letters, 7, 191–192. http://adsabs.harvard.edu/abs/1971ApL....7.191L.
  88. Leighton, R. B., Noyes, R. W., & Simon, G. W. (1962). Velocity fields in the solar atmosphere I. Preliminary report. The Astrophysical Journal, 135, 474.  https://doi.org/10.1086/147285.ADSCrossRefGoogle Scholar
  89. Levin, Y. (1999). Runaway heating by r-modes of neutron stars in low-mass x-ray binaries. The Astrophysical Journal, 517, 328–333.  https://doi.org/10.1086/307196, arXiv:astro-ph/9810471.ADSCrossRefGoogle Scholar
  90. Lindblom, L. (1992). Determining the nuclear equation of state from neutron-star masses and radii. The Astrophysical Journal, 398, 569–573.  https://doi.org/10.1086/171882.ADSCrossRefGoogle Scholar
  91. Lindblom, L., Owen, B. J., & Morsink, S. M. (1998). Gravitational radiation instability in hot young neutron stars. Physical Review Letters, 80, 4843–4846.  https://doi.org/10.1103/PhysRevLett.80.4843, arXiv:gr-qc/9803053.ADSCrossRefGoogle Scholar
  92. Lombardo, U. & Schulze, H.-J. (2001). Superfluidity in neutron star matter. In D. Blaschke, N. K. Glendenning & A. Sedrakian (Eds.), Physics of neutron star interiors (vol. 578). Lecture notes in physics. Berlin: Springer. http://adsabs.harvard.edu/abs/2001LNP...578...30L, arXiv:astro-ph/0012209.
  93. Marshall, F. E., Gotthelf, E. V., Zhang, W., Middleditch, J., & Wang, Q. D. (1998). Discovery of an ultrafast x-ray pulsar in the supernova remnant N157B. The Astrophysical Journal, 499, L179–L182.  https://doi.org/10.1086/311381, arXiv:astro-ph/9803214.ADSCrossRefGoogle Scholar
  94. Mastrano, A., Melatos, A., Reisenegger, A., & Akgün, T. (2011). Gravitational wave emission from a magnetically deformed non-barotropic neutron star. Monthly Notices of the Royal Astronomical Society, 417, 2288–2299.  https://doi.org/10.1111/j.1365-2966.2011.19410.x, arXiv:1108.0219.ADSCrossRefGoogle Scholar
  95. Mazets, E. P., Golentskii, S. V., Ilinskii, V. N., Aptekar, R. L., & Guryan, I. A. (1979). Observations of a flaring X-ray pulsar in Dorado. Nature, 282, 587–589.  https://doi.org/10.1038/282587a0.ADSCrossRefGoogle Scholar
  96. Morsink, S. M. (2002). Nonlinear couplings between r-modes of rotating neutron stars. The Astrophysical Journal, 571, 435–446.  https://doi.org/10.1086/339858, arXiv:astro-ph/0202051.ADSCrossRefGoogle Scholar
  97. Mytidis, A., Coughlin, M. & Whiting, B. (2015). Constraining the r-mode saturation amplitude from a hypothetical detection of r-mode gravitational waves from a newborn neutron star: Sensitivity study. The Astrophysical Journal, 810, 27.  https://doi.org/10.1088/0004-637X/810/1/27, arXiv:1505.03191.ADSCrossRefGoogle Scholar
  98. Oppenheimer, J. R., & Volkoff, G. M. (1939). On massive neutron cores. Physical Review, 55, 374–381.  https://doi.org/10.1103/PhysRev.55.374.ADSCrossRefzbMATHGoogle Scholar
  99. Ott, C. D., Burrows, A., Thompson, T. A., Livne, E., & Walder, R. (2006). The spin periods and rotational profiles of neutron stars at birth. The Astrophysical Journal. Supplement Series, 164, 130–155.  https://doi.org/10.1086/500832, arXiv:astro-ph/0508462.ADSCrossRefGoogle Scholar
  100. Ou, S., Tohline, J. E., & Lindblom, L. (2004). Nonlinear development of the secular bar-mode instability in rotating neutron stars. The Astrophysical Journal, 617, 490–499.  https://doi.org/10.1086/425296, arXiv:astro-ph/0406037.ADSCrossRefGoogle Scholar
  101. Owen, B. J., Lindblom, L., Cutler, C., Schutz, B. F., Vecchio, A., & Andersson, N. (1998). Gravitational waves from hot young rapidly rotating neutron stars. Physical Review D, 58, 084020.  https://doi.org/10.1103/PhysRevD.58.084020, arXiv:gr-qc/9804044.
  102. Palmer, D. M., et al. (2005). A giant \(\gamma \)-ray flare from the magnetar SGR 1806–1820. Nature, 434, 1107–1109.  https://doi.org/10.1038/nature03525, arXiv:astro-ph/0503030.ADSCrossRefGoogle Scholar
  103. Papaloizou, J. & Pringle, J. E. (1978). Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables. Monthly Notices of the Royal Astronomical Society, 182, 423–442. http://adsabs.harvard.edu/abs/1978MNRAS.182..423P.ADSCrossRefzbMATHGoogle Scholar
  104. Passamonti, A., & Glampedakis, K. (2012). Non-linear viscous damping and gravitational wave detectability of the f-mode instability in neutron stars. Monthly Notices of the Royal Astronomical Society, 422, 3327–3338.  https://doi.org/10.1111/j.1365-2966.2012.20849.x, arXiv:1112.3931.ADSCrossRefGoogle Scholar
  105. Passamonti, A., Gaertig, E., Kokkotas, K. D., & Doneva, D. (2013). Evolution of the f-mode instability in neutron stars and gravitational wave detectability. Physical Review D, 87, 084010.  https://doi.org/10.1103/PhysRevD.87.084010, arXiv:1209.5308.
  106. Pekeris, C. L. (1938). Nonradial oscillations of stars. The Astrophysical Journal, 88, 189.  https://doi.org/10.1086/143971.ADSCrossRefzbMATHGoogle Scholar
  107. Punturo, M., et al. (2010). The Einstein telescope: A third-generation gravitational wave observatory. Classical Quantum Gravity, 27, 194002.  https://doi.org/10.1088/0264-9381/27/19/194002.ADSCrossRefGoogle Scholar
  108. Ritter, A. (1879). Wiedemann’s Annalen (vol. 8, p. 179).Google Scholar
  109. Sathyaprakash, B. S., & Schutz, B. F. (2009). Physics, astrophysics and cosmology with gravitational waves. Living Reviews in Relativity, 12, 2.  https://doi.org/10.12942/lrr-2009-2, arXiv:0903.0338.
  110. Sathyaprakash, B., et al. (2012). Scientific objectives of Einstein telescope. Classical Quantum Gravity, 29, 124013.  https://doi.org/10.1088/0264-9381/29/12/124013, arXiv:1206.0331.ADSCrossRefGoogle Scholar
  111. Schenk, A. K., Arras, P., Flanagan, É. É., Teukolsky, S. A., & Wasserman, I. (2001). Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars. Physical Review D, 65, 024001.  https://doi.org/10.1103/PhysRevD.65.024001, arXiv:gr-qc/0101092.
  112. Shibata, M., & Karino, S. (2004). Numerical evolution of secular bar-mode instability induced by the gravitational radiation reaction in rapidly rotating neutron stars. Physical Review D, 70, 084022.  https://doi.org/10.1103/PhysRevD.70.084022, arXiv:astro-ph/0408016.
  113. Somiya, K. (2012). Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector. Classical Quantum Gravity, 29, 124007.  https://doi.org/10.1088/0264-9381/29/12/124007, arXiv:1111.7185.
  114. Stergioulas, N., Bauswein, A., Zagkouris, K., & Janka, H.-T. (2011). Gravitational waves and non-axisymmetric oscillation modes in mergers of compact object binaries. Monthly Notices of the Royal Astronomical Society, 418, 427–436.  https://doi.org/10.1111/j.1365-2966.2011.19493.x, arXiv:1105.0368.ADSCrossRefGoogle Scholar
  115. Thomson, W. (1863). Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid. Philosophical Transactions of the Royal Society of London, 153, 583–616.  https://doi.org/10.1098/rstl.1863.0028.ADSCrossRefGoogle Scholar
  116. Tolman, R. C. (1939). Static solutions of Einstein’s field equations for spheres of fluid. Physical Review, 55, 364–373.  https://doi.org/10.1103/PhysRev.55.364.ADSCrossRefzbMATHGoogle Scholar
  117. Ulrich, R. K. (1970). The five-minute oscillations on the solar surface. The Astrophysical Journal, 162, 993.  https://doi.org/10.1086/150731.ADSCrossRefGoogle Scholar
  118. Unnikrishnan, C. S. (2013). IndIGO and Ligo-India scope and plans for gravitational wave research and precision metrology in India. International Journal of Modern Physics D, 22, 1341010.  https://doi.org/10.1142/S0218271813410101, arXiv:1510.06059.ADSCrossRefGoogle Scholar
  119. Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. (1989). Nonradial oscillations of stars (2nd ed.). Tokyo: University of Tokyo Press. http://adsabs.harvard.edu/abs/1989nos.book....U.
  120. Ushomirsky, G., Cutler, C., & Bildsten, L. (2000). Deformations of accreting neutron star crusts and gravitational wave emission. Monthly Notices of the Royal Astronomical Society, 319, 902–932.  https://doi.org/10.1046/j.1365-8711.2000.03938.x, arXiv:astro-ph/0001136.ADSCrossRefGoogle Scholar
  121. Wagoner, R. V. (1975). Test for the existence of gravitational radiation. The Astrophysical Journal, 196, L63–L65.  https://doi.org/10.1086/181745.ADSCrossRefGoogle Scholar
  122. Warszawski, L., & Melatos, A. (2012). Gravitational-wave bursts and stochastic background from superfluid vortex avalanches during pulsar glitches. Monthly Notices of the Royal Astronomical Society, 423, 2058–2074.  https://doi.org/10.1111/j.1365-2966.2012.20977.x, arXiv:1203.4466.ADSCrossRefGoogle Scholar
  123. Will, C. M. (2014). The confrontation between general relativity and experiment. Living Reviews in Relativity, 17, 4.  https://doi.org/10.12942/lrr-2014-4, arXiv:1403.7377.
  124. Yakovlev, D. G., Haensel, P., Baym, G., & Pethick, C. (2013). Lev Landau and the concept of neutron stars. Physics-Uspekhi, 56, 289–295.  https://doi.org/10.3367/UFNe.0183.201303f.0307, arXiv:1210.0682.ADSCrossRefGoogle Scholar
  125. Zink, B., Lasky, P. D., & Kokkotas, K. D. (2012). Are gravitational waves from giant magnetar flares observable? Physical Review D, 85, 024030.  https://doi.org/10.1103/PhysRevD.85.024030, arXiv:1107.1689.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations