Skip to main content

Correlation Between Structure and Function in Glaucomatous Damage

  • Chapter
  • First Online:
Biophysical Properties in Glaucoma

Abstract

Glaucoma is a progressive condition, which gradually causes a negative morphological change in optic nerve head (ONH) and retina, thus resulting in a typical functional loss of visual field (VF). Evaluation of structural and functional changes has become a usual routine in glaucoma management, while the assessment of relationship between structure and function—one of the most important aspects to adequately grade the severity and course of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res. 2010;29(4):249–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malik R, Swanson WH, Garway-Heath DF. The structure-function relationship in glaucoma-past thinking and current concepts. Clin Exp Ophthalmol. 2012;40(4):369–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26(6):688–710.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Öhnell H, Heijl A, Brenner L, Anderson H, Bengtsson B. Structural and functional progression in the early manifest Glaucoma trial. Ophthalmology. 2016;123(6):1173–80.

    Article  PubMed  Google Scholar 

  5. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  6. Station W. Predictive factors for open-angle Glaucoma among patients with ocular hypertension in the European Glaucoma prevention study. Ophthalmology. 2007;114(1):3–9.

    Article  Google Scholar 

  7. Johnson CA, Keltner JL, Miller JP, Ii RKP, Wilson MR. The ocular hypertension treatment study. Arch Ophthalmol. 2002;120(June).

    Google Scholar 

  8. Miglior S. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112(3):366–75.

    Article  PubMed  Google Scholar 

  9. Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL. The relationship between nerve fiber layer and perimetry measurements. Investig Ophthalmol Vis Sci. 2007;48(2):763–73.

    Article  Google Scholar 

  10. Bowd C, Hao J, Tavares IM, Medeiros FA, Zangwill LM, Lee TW, et al. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Investig Ophthalmol Vis Sci. 2008;49(3):945–53.

    Article  Google Scholar 

  11. Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR, et al. Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Investig Opthalmol Vis Sci. 2006;47(7):2889.

    Article  Google Scholar 

  12. Wheat JL, Rangaswamy NV, Harwerth RS. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J Glaucoma. 2012;21:95–101.

    PubMed  PubMed Central  Google Scholar 

  13. Madeiros FA, Lisboa R, Weinreb RN, et al. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol. 2012;130:1107–16.

    Google Scholar 

  14. Rao HL, Hussain RSM, Januwada M, Pillutla LN, Begum VU, Chaitanya A, et al. Structural and functional assessment of macula to diagnose glaucoma. Eye. 2017;31(4):593–600.

    Article  CAS  PubMed  Google Scholar 

  15. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.

    Article  CAS  PubMed  Google Scholar 

  16. Grillo LM, Wang DL, Ramachandran R, et al. The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Transl Vis Sci Technol. 2016;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Traynis I, De Moraes CG, Raza AS, et al. Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 2014;132:291–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cennamo G, Montorio D, Romano MR, Cardone DM, Minervino C, Reibaldi M, et al. Structure-functional parameters in differentiating between patients with different degrees of glaucoma. J Glaucoma. 2016;25(10):e884–8.

    Article  PubMed  Google Scholar 

  19. Mota M, Vaz FT, Ramalho M, Pedrosa C, Lisboa M, Kaku P, et al. Macular thickness assessment in patients with glaucoma and its correlation with visual fields. J Curr Glaucoma Pract. 2016;10(3):85–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Raza AS, Cho J, de Moraes CGV, et al. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol. 2011;129:1529–36.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rao HL, Januwada M, Hussain RSM, Pillutla LN, Begum VU, Chaitanya A, et al. Comparing the structure–function relationship at the macula with standard automated perimetry and microperimetry. Investig Ophthalmol Vis Sci. 2015;56(13):8063–8.

    Article  CAS  Google Scholar 

  22. Ohkubo S, Higashide T, Udagawa S, et al. Focal relationship between structure and function within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2014;55:5269–77.

    Article  PubMed  Google Scholar 

  23. Lee JW, Morales E, Sharifipour F, Amini N, Yu F, Afifi AA, et al. The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma. Br J Ophthalmol. 2017;101(8):1052–8.

    Article  PubMed  Google Scholar 

  24. Kim EK, Park HYL, Park CK. Relationship between retinal inner nuclear layer thickness and severity of visual field loss in glaucoma. Sci Rep. 2017;7(1):1–7.

    Article  CAS  Google Scholar 

  25. Cvenkel B, Sustar M, Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol. 2017;135(1):17–28.

    Article  PubMed  Google Scholar 

  26. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38(Suppl):S3–6.

    Article  PubMed  Google Scholar 

  27. Shin JW, Sung KR, Lee JY, et al. Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 2017;255:1193–202.

    Article  CAS  PubMed  Google Scholar 

  28. Bojikian KD, Chen CL, Wen JC, et al. Optic disc perfusion in primary open angle and normal tension Glaucoma eyes using optical coherence tomography-based microangiography. PLoS One. 2016;11:e0154691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Richter GM, Madi I, Chu Z, Burkemper B, Chang R, Zaman A, et al. Structural and functional associations of macular microcirculation in the ganglion cell-inner plexiform layer in glaucoma using optical coherence tomography angiography. J Glaucoma. 2018;27:281.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alnawaiseh M, Lahme L, Müller V, Rosentreter A, Eter N. Correlation of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2018;256(3):589–97.

    Article  PubMed  Google Scholar 

  31. Rao HL, Dasari S, Riyazuddin M, Puttaiah NK, Pradhan ZS, Weinreb RN, et al. Diagnostic ability and structure-function relationship of peripapillary optical microangiography measurements in glaucoma. J Glaucoma. 2018;874(C):1.

    Article  Google Scholar 

  32. Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Investig Ophthalmol Vis Sci. 2012;53(11):6939–46.

    Article  Google Scholar 

  33. Medeiros FA, Zangwill LM, Anderson DR, et al. Estimating the rate of retinal ganglion cell loss in glaucoma. Am J Ophthalmol. 2012;154:814–24.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Medeiros FA, Zangwill LM, Girkin CA, et al. Combining structural and functional measurements to improve estimates of rates of glaucomatous progression. Am J Ophthalmol. 2012;153:1197–205.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maciulaitiene, R., Januleviciene, I. (2019). Correlation Between Structure and Function in Glaucomatous Damage. In: Januleviciene, I., Harris, A. (eds) Biophysical Properties in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-98198-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98198-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98197-0

  • Online ISBN: 978-3-319-98198-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics