Skip to main content

MAS: A Corpus of Tweets for Marketing in Spanish

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11155)

Abstract

This paper presents a corpus of tweets in Spanish language which were manually tagged for marketing purposes. The used tags describe three aspects of the text of each Twitter post. First, the emotions a brand caused to the author from among a taxonomy of emotions designed by marketing experts. Also, whether it mentioned any element of the marketing mix (including various relevant marketing concepts such as price or promotion). Finally, the position of the author of the tweet with respect to the acquisition process (or purchase funnel). Each Twitter post is related to only one brand, which is also indicated in the corpus. The corpus presented in this article is published in a machine-readable format as a collection of RDF documents with links to additional external information. The paper also includes details on the used vocabulary and the tagging criteria, as well as a description of the annotation process followed to tag the tweets.

Keywords

  • Corpus
  • Marketing
  • Marketing mix
  • Sentiment analysis
  • NLP
  • Purchase funnel
  • Emotion analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98192-5_53
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-98192-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    http://economictimes.indiatimes.com/definition/marketing-mix.

  2. 2.

    http://www.cienlpsbigger.es.

  3. 3.

    http://sabcorpus.linkeddata.es/vocab.

  4. 4.

    https://www.w3.org/Submission/sioc-spec/.

  5. 5.

    http://purl.org/goodrelations/.

  6. 6.

    https://permid.org/.

  7. 7.

    http://dbpedia.org/.

References

  1. Aguado, G., et al.: Análisis de sentimientos de un corpus de redes sociales. In: Actas del 31er Congreso Asociación Española de Lingüstica Aplicada. Comunicación, Cognición y Cibernética, pp. 522–534 (2013). http://oa.upm.es/20092/

  2. Bel, N., Diz-pico, J., Pocostales, J.: Classifying short texts for a Social Media monitoring system. Clasificación de textos cortos para un sistema monitor de los Social Media. Procesamiento del Lenguaje Nat. 59, 57–64 (2017)

    Google Scholar 

  3. Borden, N.H.: The concept of the marketing mix. J. Advertising Res. 4(2), 2–7 (1964)

    Google Scholar 

  4. Bruyn, A.D., Lilien, G.L.: A multi-stage model of word-of-mouth influence through viral marketing. Int. J. Res. Mark. 25(3), 151–163 (2008)

    CrossRef  Google Scholar 

  5. Cohan-Sujay, C., Madhulika, Y.: Intention analysis for sales, marketing and customer service. In: Proceedings of COLING 2012, Demonstration Papers, pp. 33–40, December 2012

    Google Scholar 

  6. Cumbreras, M.Á.G., Cámara, E.M., et al.: TASS 2015 - The evolution of the Spanish opinion mining systems. Procesamiento de Lenguaje Nat. 56, 33–40 (2016)

    Google Scholar 

  7. Elzinga, D., Mulder, S., Vetvik, O.J., et al.: The consumer decision journey. McKinsey Q. 3, 96–107 (2009)

    Google Scholar 

  8. García-Silva, A., Rodríguez-Doncel, V., Corcho, Ó.: Semantic characterization of tweets using topic models: a use case in the entertainment domain. Int. J. Semantic Web Inf. Syst. 9(3), 1–13 (2013)

    CrossRef  Google Scholar 

  9. Goldberg, A.B., Fillmore, N., Andrzejewski, D., Xu, Z., Gibson, B., Zhu, X.: May all your wishes come true : a study of wishes and how to recognize them. In: Proceedings of Human Language Technologies: NAACL 2009 (June), pp. 263–271 (2009)

    Google Scholar 

  10. Hasan, M., Kotov, A., Mohan, A., Lu, S., Stieg, P.M.: Feedback or research: separating pre-purchase from post-purchase consumer reviews. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 682–688. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_53

    CrossRef  Google Scholar 

  11. Martínez-Cámara, E., Martín-Valdivia, M.T., et al.: Polarity classification for Spanish Tweets using the COST corpus. J. Inf. Sci. 41(3), 263–272 (2015)

    CrossRef  Google Scholar 

  12. McCarthy, E.: Basic Marketing, A Managerial Approach, 6th edn. Richard D. Irwin, Inc., Homewood (1978)

    Google Scholar 

  13. Moghaddam, S.: Beyond sentiment analysis: mining defects and improvements from customer feedback. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 400–410. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3_44

    CrossRef  Google Scholar 

  14. Mohamed, H., Mohamed, S.G., Lamjed, B.S.: Customer intentions analysis of twitter based on semantic patterns, pp. 2–6 (2015)

    Google Scholar 

  15. Molina-González, M.D., Martínez-Cámara, E., et al.: Cross-domain sentiment analysis using Spanish opinionated words. In: Proceedings of NLDB, pp. 214–219 (2014)

    Google Scholar 

  16. Navas-Loro, M., Rodríguez-Doncel, V., Santana-Perez, I., Sánchez, A.: Spanish corpus for sentiment analysis towards brands. In: Proceedings of the 19th International Conference on Speech and Computer (SPECOM), pp. 680–689 (2017)

    Google Scholar 

  17. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)

    Google Scholar 

  18. Plaza-Del-Arco, F.M., Martín-Valdivia, M.T., et al.: COPOS: corpus of patient opinions in Spanish. Application of sentiment analysis techniques. Procesamiento de Lenguaje Nat. 57, 83–90 (2016)

    Google Scholar 

  19. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis, pp. 27–35, January 2014

    Google Scholar 

  20. Pontiki, M., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of SemEval-2016, pp. 19–30. ACL, San Diego, June 2016

    Google Scholar 

  21. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: ProWorkshop SemEval-2016, pp. 19–30. ACL (2016)

    Google Scholar 

  22. Ramanand, J., Bhavsar, K., Pedanekar, N.: Wishful thinking: finding suggestions and ‘buy’ wishes from product reviews. In: Proceedings of the NAACL HLT 2010 Workshop (CAAGET 2010) (June), pp. 54–61 (2010)

    Google Scholar 

  23. Rangel, F., Rosso, P., Reyes, A.: Emotions and irony per gender in facebook. In: Proceedings of Workshop ES3LOD, LREC-2014, pp. 1–6 (2014)

    Google Scholar 

  24. Sánchez Rada, J.F., Torres, M., et al.: A linked data approach to sentiment and emotion analysis of twitter in the financial domain. In: FEOSW (2014)

    Google Scholar 

  25. Van Waterschoot, W., Van den Bulte, C.: The 4P classification of the marketing mix revisited. J. Mark. 56, 83–93 (1992)

    Google Scholar 

  26. Vázquez, S., Muñoz-García, O., Campanella, I., Poch, M., Fisas, B., Bel, N., Andreu, G.: A classification of user-generated content into consumer decision journey stages. Neural Networks 58(Suppl. C), 68–81 (2014). Special Issue on “Affective Neural Networks and Cognitive Learning Systems for Big Data Analysis”

    Google Scholar 

  27. Vineet, G., Devesh, V., Harsh, J., Deepam, K., Shweta, K.: Identifying purchase intent from social posts. In: ICWSM 2014, pp. 180–186 (2014)

    Google Scholar 

  28. Westerski, A., Iglesias, C.A., Rico, F.T.: Linked opinions: describing sentiments on the structured web of data. In: Proceedings of the 4th International Workshop Social Data on the Web, vol. 830 (2011)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by LPS-BIGGER (IDI-20141259), esTextAnalytics project (RTC-2016-4952-7), a Predoctoral grant by the Consejo de Educación, Juventud y Deporte de la Comunidad de Madrid partially founded by the European Social Fund, two Predoctoral grants from the I+D+i program of the Universidad Politécnica de Madrid and a Juan de la Cierva contract. We would also want to thank Pablo Calleja for his help in corpora statistics extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Navas-Loro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Navas-Loro, M., Rodríguez-Doncel, V., Santana-Pérez, I., Fernández-Izquierdo, A., Sánchez, A. (2018). MAS: A Corpus of Tweets for Marketing in Spanish. In: , et al. The Semantic Web: ESWC 2018 Satellite Events. ESWC 2018. Lecture Notes in Computer Science(), vol 11155. Springer, Cham. https://doi.org/10.1007/978-3-319-98192-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98192-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98191-8

  • Online ISBN: 978-3-319-98192-5

  • eBook Packages: Computer ScienceComputer Science (R0)