Abele, L., et al.: Combining knowledge modeling and machine learning for alarm root cause analysis. IFAC Proc. 46(9), 1843–1848 (2010)
CrossRef
Google Scholar
Smith, B.A., et al.: Fault diagnosis using first order logic tools. In: Proceedings of the 32nd Midwest Symposium on Circuits and Systems, vol. 1, pp. 299–302, August 1989
Google Scholar
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)
CrossRef
Google Scholar
Calvier, FÉ., Kammoun, A., Zimmermann, A., Singh, K., Fayolle, J.: Ontology driven complex event pattern definition (Short Paper). In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems: OTM 2016 Conferences. OTM 2016. Lecture Notes in Computer Science, vol. 10033. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_31
Camossi, E., et al.: Semantic-based Anomalous Pattern Discovery in Moving Object Trajectories, pp. 1–20. CoRR abs/1305.1 (2013)
Google Scholar
Ehsani-Besheli, F., Zarandi, H.R.: Context-aware anomaly detection in embedded systems. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-RELCOMEX 2017. AISC, vol. 582, pp. 151–165. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59415-6_15
CrossRef
Google Scholar
Hammar, K.: Modular semantic CEP for threat detection. In: Operations Research and Data Mining ORADM 2012 workshop proceedings (2012). ISBN: 978–607-414-284-6
Google Scholar
Huang, H., et al.: Streaming anomaly detection using randomized matrix sketching. Proc. VLDB Endow. 9(3), 192–203 (2015)
CrossRef
Google Scholar
Kdouh, H., et al.: Wireless sensor network on board vessels. In: 2012 19th International Conference on Telecommunications, ICT 2012, pp. 1–6. IEEE, April 2012
Google Scholar
Schlichtkrull, M.S., et al.: Modeling relational data with graph convolutional networks. CoRR abs/1703.06103 (2017)
Google Scholar
Nguyen, D.Q.: An overview of embedding models of entities and relationships for knowledge base completion. arXiv preprint arXiv 1703.08098 (2017)
Google Scholar
Nickel, M., et al.: A review of relational machine learning for knowledge graph. Proc. IEEE 104(28), 1–23 (2015)
Google Scholar
Patri, O., et al.: Sensors to events: semantic modeling and recognition of events from data streams. Int. J. Semant. Comput. 10, 461–501 (2016)
CrossRef
Google Scholar
Paulheim, H., et al.: Exploiting linked open data as background knowledge in data mining. In: International Workshop on Linked Data, pp. 1–10 (2013)
Google Scholar
Ristoski, P., et al.: RDF2Vec: RDF Graph Embeddings and Their Applications. IOS Press (2016)
Google Scholar
Sandha, S.S., et al.: Complex Event Processing of Health Data in Real-time to Predict Heart Failure Risk and Stress (2017)
Google Scholar
Solé, M., et al.: Survey on models and techniques for root-cause analysis. In: Clinical Orthopaedics and Related Research (CoRR), pp. 1–18 (2017)
Google Scholar
Song, Y., et al.: Machine Learning with World Knowledge: The Position and Survey, pp. 1–20. arXiv preprint arXiv 1705.02908 (2017)
Google Scholar
Souiden, I., Brahmi, Z., Toumi, H.: A survey on outlier detection in the context of stream mining: review of existing approaches and recommadations. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 372–383. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_37
CrossRef
Google Scholar
Ahmad, S., et al.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)
CrossRef
Google Scholar
Ebisu, T., et al.: Toruse: Knowledge graph embedding on a lie group. CoRR abs/1711.05435 (2017)
Google Scholar
Ademujimi, T.T., Brundage, M.P., Prabhu, V.V.: A review of current machine learning techniques used in manufacturing diagnosis. In: Lödding, H., Riedel, R., Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.) APMS 2017. IAICT, vol. 513, pp. 407–415. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66923-6_48
CrossRef
Google Scholar
Ukil, A., et al.: IoT healthcare analytics: the importance of anomaly detection. In: Conference on Advanced Information Networking and Applications, pp. 994–997 (2016)
Google Scholar
Uzun, Y., et al.: Rule extraction from training artificial neural network. Multi. Eng. Sci. Technol. 3(8), 2458–9403 (2016)
MathSciNet
Google Scholar
Wang, Q., et al.: Knowledge base completion via coupled path ranking. In: ACL, pp. 1308–1318 (2014)
Google Scholar
Xiao, F., et al.: New parallel processing strategies in complex event processing systems with data streams. Distrib. Sens. Netw. 13(8), 1–15 (2017)
Google Scholar
Xu, Y., et al.: Semantic-based complex event processing in the AAL domain. In: 9th International Semantic Web Conference (ISWC2010) (2010)
Google Scholar
He, Y., et al.: Mechanism-indepedent outlier detection method for online experimentation. In: IEEE International Conference on Data Science, pp. 640–647 (2017)
Google Scholar
YE: Big data: Changing the way businesses compete and operate (2014)
Google Scholar
Zheng, A.X., et al.: Failure diagnosis using decision trees. In: Proceedings of the First International Conference on Autonomic Computing (2004)
Google Scholar