ViziQuer: A Web-Based Tool for Visual Diagrammatic Queries Over RDF Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11155)


We demonstrate the open source ViziQuer tool for web-based creation and execution of visual diagrammatic queries over RDF/SPARQL data. The tool supports the data instance level and statistics queries, providing visual counterparts for most of SPARQL 1.1 select query constructs, including aggregation and subqueries. A query environment can be created over a user-supplied SPARQL endpoint with known data schema (a data schema exploration service is available, as well). There are pre-defined demonstration query environments for a mini-university data set, a fragment of synthetic similar to reality hospital data set, and a variant of Linked Movie Database RDF data set.


Visual query tool Ad-hoc queries Rich queries RDF data SPARQL 



This work has been partially supported by research organization base financing at Institute of Mathematics and Computer Science, University of Latvia and the University of Latvia project AAP2016/B032 “Innovative information technologies”.


  1. 1.
    SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013.
  2. 2.
    Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univ. Access Inf. Soc. 15(1), 129–152 (2016)CrossRefGoogle Scholar
  3. 3.
    Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: visual composition of SPARQL queries. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 62–66. Springer, Cham (2015). Scholar
  4. 4.
    Zviedris, M., Barzdins, G.: ViziQuer: a tool to explore and query SPARQL endpoints. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 441–445. Springer, Heidelberg (2011). Scholar
  5. 5.
    Cerans, K., Ovcinnikova, J., Zviedris, M.: SPARQL aggregate queries made easy with diagrammatic query language ViziQuer. In: Proceedings of the ISWC 2015 Posters & Demonstrations Track, CEUR, vol. 1486 (2015).
  6. 6.
    Čerāns, K., Ovčiņņikova, J.: ViziQuer: notation and tool for data analysis SPARQL queries. In: Proceedings of VOILA 2016, Kobe, Japan, CEUR Workshop Proceedings,, vol. 1704, pp. 151–159 (2016).
  7. 7.
    Cerans, K., et al.: Extended UML class diagram constructs for visual SPARQL queries in ViziQuer/web. In: Voila!2017, CEUR Workshop Proceedings, vol. 1947, pp. 87–98 (2017)Google Scholar
  8. 8.
    Barzdins, J., Grasmanis, M., Rencis, E., Sostaks, A., Barzdins, J.: Ad-Hoc querying of semistar data ontologies using controlled natural language. In: Frontiers of AI and Applications, Databases and Information Systems IX, vol. 291, pp. 3–16. IOS Press (2016).
  9. 9.
  10. 10.
    Sprogis, A.: ajoo: WEB based framework for domain specific modeling tools. In: Frontiers of AI and Applications, Databases and Information Systems IX, vol. 291, pp. 115–126. IOS Press (2016).
  11. 11.
    Strack, I.: Getting Started with Meteor JavaScript Framework. Packt Publishing Ltd, Birmingham (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia
  2. 2.Department of ComputingUniversity of LatviaRigaLatvia
  3. 3.Department of MedicineUniversity of LatviaRigaLatvia

Personalised recommendations