Skip to main content

Exploiting Equivalence to Infer Type Subsumption in Linked Graphs

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11155)


Open Knowledge Graphs (KGs) such as DBpedia and Wikidata have been recognized as the foundations for diverse applications in the field of data mining and information retrieval. Each of these KGs follows a different knowledge organization as well as is based on differently structured ontologies. Moreover, it has been observed that type information are often noisy, incomplete or even incorrect. In general, there is a need for well defined and comparable type information for the entities of the KGs. In this paper, we propose an isomorphism-based approach to infer subsumption relations to RDF type information in Wikidata by exploiting the RDF type information from DBpedia.


  • Knowledge graph
  • RDF
  • Wikidata
  • DBpedia

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-98192-5_14
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-98192-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

  2. 2.


  1. Directory with all achieved results.

  2. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, Opencyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)

    CrossRef  Google Scholar 

  3. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors in numerical linked data using cross-checked outlier detection. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 357–372. Springer, Cham (2014).

    CrossRef  Google Scholar 

  4. Ismayilov, A., Kontokostas, D., Auer, S., Lehmann, J., Hellmann, S.: Wikidata through the Eyes of DBpedia. CoRR abs/1507.04180 (2015)

    Google Scholar 

  5. Koutraki, M., Preda, N., Vodislav, D.: Online relation alignment for linked datasets. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 152–168. Springer, Cham (2017).

    CrossRef  Google Scholar 

  6. Melo, A., Paulheim, H., Völker, J.: Type prediction in RDF knowledge bases using hierarchical multilabel classification. In: WIMS, p. 14 (2016)

    Google Scholar 

  7. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).

    CrossRef  Google Scholar 

  8. Ringler, D., Paulheim, H.: One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS, vol. 10505, pp. 366–372. Springer, Cham (2017).

    CrossRef  Google Scholar 

  9. Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Cham (2014).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Russa Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Biswas, R., Koutraki, M., Sack, H. (2018). Exploiting Equivalence to Infer Type Subsumption in Linked Graphs. In: , et al. The Semantic Web: ESWC 2018 Satellite Events. ESWC 2018. Lecture Notes in Computer Science(), vol 11155. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98191-8

  • Online ISBN: 978-3-319-98192-5

  • eBook Packages: Computer ScienceComputer Science (R0)