Advertisement

Exploiting Equivalence to Infer Type Subsumption in Linked Graphs

  • Russa BiswasEmail author
  • Maria Koutraki
  • Harald Sack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11155)

Abstract

Open Knowledge Graphs (KGs) such as DBpedia and Wikidata have been recognized as the foundations for diverse applications in the field of data mining and information retrieval. Each of these KGs follows a different knowledge organization as well as is based on differently structured ontologies. Moreover, it has been observed that type information are often noisy, incomplete or even incorrect. In general, there is a need for well defined and comparable type information for the entities of the KGs. In this paper, we propose an isomorphism-based approach to infer subsumption relations to RDF type information in Wikidata by exploiting the RDF type information from DBpedia.

Keywords

Knowledge graph RDF Wikidata DBpedia 

References

  1. 1.
    Directory with all achieved results. https://github.com/ISE-AIFB/Wiki_DB
  2. 2.
    Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, Opencyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)CrossRefGoogle Scholar
  3. 3.
    Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors in numerical linked data using cross-checked outlier detection. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 357–372. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_23CrossRefGoogle Scholar
  4. 4.
    Ismayilov, A., Kontokostas, D., Auer, S., Lehmann, J., Hellmann, S.: Wikidata through the Eyes of DBpedia. CoRR abs/1507.04180 (2015)Google Scholar
  5. 5.
    Koutraki, M., Preda, N., Vodislav, D.: Online relation alignment for linked datasets. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 152–168. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_10CrossRefGoogle Scholar
  6. 6.
    Melo, A., Paulheim, H., Völker, J.: Type prediction in RDF knowledge bases using hierarchical multilabel classification. In: WIMS, p. 14 (2016)Google Scholar
  7. 7.
    Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_32CrossRefGoogle Scholar
  8. 8.
    Ringler, D., Paulheim, H.: One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS, vol. 10505, pp. 366–372. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67190-1_33CrossRefGoogle Scholar
  9. 9.
    Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_34CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FIZ Karlsruhe – Leibniz Institute for Information InfrastructureKarlsruheGermany
  2. 2.Institute AIFBKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations