Skip to main content

Fibrosis–Inflammation of the Cardiovascular System

  • Chapter
  • First Online:
Myocardial Preservation

Abstract

In recent years, inflammation has been revealed as a crucial underlying mechanism implicated in most cardiovascular diseases. Extracellular matrix remodeling and pathological fibrous formation (quantitative and qualitative) have been recognized as maladaptive tissue responses to most cardiovascular complications. Systemic inflammation plays an important role in the modulation of extracellular matrix degradation and regeneration. Left ventricular fibrosis and adverse remodeling in cardiomyopathies, in heart failure, and following myocardial infarction are major clinical conditions where inflammation is an essential mediator. Classical and novel treatments have been introduced to eliminate the interaction between inflammation and fibrosis in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oikonomou E, Vogiatzi G, Tsalamandris S, et al. Non-natriuretic peptide biomarkers in heart failure with preserved and reduced ejection fraction. Biomark Med. 2018;12:783–97.

    Article  CAS  PubMed  Google Scholar 

  2. Oikonomou E, Tousoulis D. Inflammation: a pathogenetic mechanism or a mediator, linking risk factors and cardiovascular disease? Int J Cardiol. 2018;264:170–1.

    Article  PubMed  Google Scholar 

  3. Brili S, Oikonomou E, Antonopoulos AS, et al. 18F-Fluorodeoxyglucose positron emission tomography/computed tomographic imaging detects aortic wall inflammation in patients with repaired coarctation of aorta. Circ Cardiovasc Imaging. 2018;11:e007002.

    Article  PubMed  Google Scholar 

  4. Antonopoulos AS, Papanikolaou E, Vogiatzi G, Oikonomou E, Tousoulis D. Anti-inflammatory agents in peripheral arterial disease. Curr Opin Pharmacol. 2017;39:1–8.

    Article  PubMed  CAS  Google Scholar 

  5. Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016;37:1723–32.

    Article  CAS  PubMed  Google Scholar 

  6. Oikonomou E, Tousoulis D, Siasos G, Zaromitidou M, Papavassiliou AG, Stefanadis C. The role of inflammation in heart failure: new therapeutic approaches. Hell J Cardiol. 2011;52:30–40.

    Google Scholar 

  7. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  8. Suthahar N, Meijers WC, Sillje HHW, de Boer RA. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14:235–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gawor M, Spiewak M, Kubik A, et al. Circulating biomarkers of hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy assessed by cardiac magnetic resonance. Biomarkers. 2018:1–7. https://doi.org/10.1080/1354750X.2018.1474261.

    Article  CAS  PubMed  Google Scholar 

  10. Pedretti S, Vargiu S, Baroni M, et al. Complexity of scar and ventricular arrhythmias in dilated cardiomyopathy of any etiology: long-term data from the SCARFEAR (Cardiovascular Magnetic Resonance Predictors of Appropriate Implantable Cardioverter–Defibrillator Therapy Delivery) registry. Clin Cardiol. 2018;41:494–501.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Siasos G, Tousoulis D, Kioufis S, et al. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem. 2012;12:1132–48.

    Article  CAS  PubMed  Google Scholar 

  12. Siebermair J, Kholmovski EG, Marrouche N. Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. JACC Clin Electrophysiol. 2017;3:791–802.

    Article  PubMed  Google Scholar 

  13. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339:237–46.

    Article  CAS  PubMed  Google Scholar 

  15. Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61:198–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol. 2001;13:534–40.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Touchard A, Henry TD, Sangiorgi G, et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol. 2005;25:1119–27.

    Article  CAS  PubMed  Google Scholar 

  18. Plutzky J. The vascular biology of atherosclerosis. Am J Med. 2003;115(Suppl 8A):55S–61S.

    Article  CAS  PubMed  Google Scholar 

  19. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res. 2001;89:201–10.

    Article  CAS  PubMed  Google Scholar 

  20. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90:251–62.

    Article  CAS  PubMed  Google Scholar 

  21. Corcoran ML, Stetler-Stevenson WG, DeWitt DL, Wahl LM. Effect of cholera toxin and pertussis toxin on prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinase production by human monocytes. Arch Biochem Biophys. 1994;310:481–8.

    Article  CAS  PubMed  Google Scholar 

  22. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94:2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Libby P, Galis ZS. Cytokines regulate genes involved in atherogenesis. Ann N Y Acad Sci. 1995;748:158–68. discussion 168–170.

    Article  CAS  PubMed  Google Scholar 

  24. Wassenaar A, Verschoor T, Kievits F, et al. CD40 engagement modulates the production of matrix metalloproteinases by gingival fibroblasts. Clin Exp Immunol. 1999;115:161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feinberg MW, Jain MK, Werner F, et al. Transforming growth factor-beta 1 inhibits cytokine-mediated induction of human metalloelastase in macrophages. J Biol Chem. 2000;275:25766–73.

    Article  CAS  PubMed  Google Scholar 

  26. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000;46:214–24.

    Article  CAS  PubMed  Google Scholar 

  27. Lane WJ, Dias S, Hattori K, et al. Stromal-derived factor 1–induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood. 2000;96:4152–9.

    CAS  PubMed  Google Scholar 

  28. Xu XP, Meisel SR, Ong JM, et al. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte–derived macrophages. Circulation. 1999;99:993–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chen KC, Wang YS, Hu CY, et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J. 2011;25:1718–28.

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto T, Akaike T, Nagano T, et al. Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys. 1997;342:261–74.

    Article  CAS  PubMed  Google Scholar 

  31. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    Article  CAS  PubMed  Google Scholar 

  32. Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 2000;19:623–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res. 2002;90:784–91.

    Article  CAS  PubMed  Google Scholar 

  34. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability. J Clin Invest. 1996;98:2572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation. 1998;98:157–63.

    Article  CAS  PubMed  Google Scholar 

  36. Godin D, Ivan E, Johnson C, Magid R, Galis ZS. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation. 2000;102:2861–6.

    Article  CAS  PubMed  Google Scholar 

  37. Chesler NC, Ku DN, Galis ZS. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am J Phys. 1999;277:H2002–9.

    CAS  Google Scholar 

  38. Sundstrom J, Evans JC, Benjamin EJ, et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004;109:2850–6.

    Article  PubMed  CAS  Google Scholar 

  39. Abboud RT, Fera T, Johal S, Richter A, Gibson N. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med. 1986;108:294–300.

    CAS  PubMed  Google Scholar 

  40. Sundstrom J, Evans JC, Benjamin EJ, et al. Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: the Framingham Heart Study. Eur Heart J. 2004;25:1509–16.

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura T, Ebihara I, Shimada N, Koide H. Effect of cigarette smoking on plasma metalloproteinase-9 concentration. Clin Chim Acta. 1998;276:173–7.

    Article  CAS  PubMed  Google Scholar 

  42. Koh KK, Ahn JY, Kang MH, et al. Effects of hormone replacement therapy on plaque stability, inflammation, and fibrinolysis in hypertensive or overweight postmenopausal women. Am J Cardiol. 2001;88:1423–6. A8

    Article  CAS  PubMed  Google Scholar 

  43. Kalela A, Ponnio M, Koivu TA, et al. Association of serum sialic acid and MMP-9 with lipids and inflammatory markers. Eur J Clin Investig. 2000;30:99–104.

    Article  CAS  Google Scholar 

  44. Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:283–8.

    Article  CAS  PubMed  Google Scholar 

  45. Papazafiropoulou A, Perrea D, Moyssakis I, Kokkinos A, Katsilambros N, Tentolouris N. Plasma levels of MMP-2, MMP-9 and TIMP-1 are not associated with arterial stiffness in subjects with type 2 diabetes mellitus. J Diabetes Complications. 2010;24:20–7.

    Article  PubMed  Google Scholar 

  46. Carlyle WC, Jacobson AW, Judd DL, et al. Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart. J Mol Cell Cardiol. 1997;29:2451–63.

    Article  CAS  PubMed  Google Scholar 

  47. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27:1281–92.

    Article  CAS  PubMed  Google Scholar 

  48. Tyagi SC, Kumar SG, Haas SJ, et al. Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol. 1996;28:1415–28.

    Article  CAS  PubMed  Google Scholar 

  49. Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A. Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol. 1983;15:261–75.

    Article  CAS  PubMed  Google Scholar 

  50. Danielsen CC, Wiggers H, Andersen HR. Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol. 1998;30:1431–42.

    Article  CAS  PubMed  Google Scholar 

  51. Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999;5:1135–42.

    Article  CAS  PubMed  Google Scholar 

  52. Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708–15.

    Article  CAS  PubMed  Google Scholar 

  54. Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem. 1996;63:185–98.

    Article  CAS  PubMed  Google Scholar 

  55. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res. 1998;82:482–95.

    Article  CAS  PubMed  Google Scholar 

  56. Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998;98:1728–34.

    Article  CAS  PubMed  Google Scholar 

  57. Coker ML, Thomas CV, Clair MJ, et al. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Phys 1998; 274:H1516–HH1523.

    Article  CAS  Google Scholar 

  58. Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res. 1999;85:364–76.

    Article  CAS  PubMed  Google Scholar 

  59. Nakaya M, Watari K, Tajima M, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383–401.

    Article  PubMed  Google Scholar 

  60. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hohensinner PJ, Kaun C, Rychli K, et al. Monocyte chemoattractant protein (MCP-1) is expressed in human cardiac cells and is differentially regulated by inflammatory mediators and hypoxia. FEBS Lett. 2006;580:3532–8.

    Article  CAS  PubMed  Google Scholar 

  62. Gabriel AS, Martinsson A, Wretlind B, Ahnve S. IL-6 levels in acute and post myocardial infarction: their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. Eur J Intern Med. 2004;15:523–8.

    Article  CAS  PubMed  Google Scholar 

  63. Nah DY, Rhee MY. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 2009;39:393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meijers WC, van der Velde AR, Pascual-Figal DA, de Boer RA. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur J Pharmacol. 2015;763:115–21.

    Article  CAS  PubMed  Google Scholar 

  65. Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–95.

    Article  CAS  PubMed  Google Scholar 

  66. Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. 2016;365:563–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Q, Wehrens XH. Connecting enterovirus infection to dystrophin dysfunction in dilated cardiomyopathy. Ann Transl Med. 2016;4:S23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med. 2012;18:426–37.

    Article  CAS  PubMed  Google Scholar 

  69. Schwimmbeck PL, Rohn G, Wrusch A, et al. Enteroviral and immune mediated myocarditis in SCID mice. Herz. 2000;25:240–4.

    Article  CAS  PubMed  Google Scholar 

  70. Li K, Xu W, Guo Q, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res. 2009;105:353–64.

    Article  CAS  PubMed  Google Scholar 

  71. Frantz S, Ducharme A, Sawyer D, et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. J Mol Cell Cardiol. 2003;35:685–94.

    Article  CAS  PubMed  Google Scholar 

  72. Diwan A, Dibbs Z, Nemoto S, et al. Targeted overexpression of noncleavable and secreted forms of tumor necrosis factor provokes disparate cardiac phenotypes. Circulation. 2004;109:262–8.

    Article  CAS  PubMed  Google Scholar 

  73. Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res. 2009;104:e9–18.

    Article  CAS  PubMed  Google Scholar 

  74. Frantz S, Hu K, Bayer B, et al. Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J. 2006;20:1918–20.

    Article  CAS  PubMed  Google Scholar 

  75. Authors/Task Force Members, Elliott PM, Anastasakis A, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.

    Article  Google Scholar 

  76. Rudolph A, Abdel-Aty H, Bohl S, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol. 2009;53:284–91.

    Article  PubMed  Google Scholar 

  77. Moon JC, Reed E, Sheppard MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260–4.

    Article  PubMed  Google Scholar 

  78. O'Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.

    Article  PubMed  Google Scholar 

  79. Ho CY, Lopez B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016;32:659–68.

    Article  PubMed  Google Scholar 

  81. Bleakley C, Hamilton PK, Pumb R, Harbinson M, McVeigh GE. Endothelial function in hypertension: victim or culprit? J Clin Hypertens (Greenwich). 2015;17:651–4.

    Article  Google Scholar 

  82. Diez J. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (Greenwich). 2007;9:546–50.

    Article  CAS  Google Scholar 

  83. Gonzalez GE, Rhaleb NE, D'Ambrosio MA, et al. Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II–high salt-induced hypertension. J Hypertens. 2015;33:144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–9.

    Article  CAS  PubMed  Google Scholar 

  85. Mazaris S, Siasos G, Oikonomou E, et al. Atrial fibrillation: biomarkers determining prognosis. Curr Med Chem. Epub 2017 Jul 27. https://doi.org/10.2174/0929867324666170727115642.

  86. Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A. Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation. 2004;109:1041–7.

    Article  CAS  PubMed  Google Scholar 

  87. Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996;800:157–74.

    Article  CAS  PubMed  Google Scholar 

  88. Boden N, Cheng Y, Knowles PF. Equilibrium and non-equilibrium conformations of peptides in lipid bilayers. Biophys Chem. 1997;65:205–10.

    Article  CAS  PubMed  Google Scholar 

  89. Patel MI, Melrose J, Ghosh P, Appleberg M. Increased synthesis of matrix metalloproteinases by aortic smooth muscle cells is implicated in the etiopathogenesis of abdominal aortic aneurysms. J Vasc Surg. 1996;24:82–92.

    Article  CAS  PubMed  Google Scholar 

  90. McMillan WD, Tamarina NA, Cipollone M, Johnson DA, Parker MA, Pearce WH. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation. 1997;96:2228–32.

    Article  CAS  PubMed  Google Scholar 

  91. Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105:1641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brili S, Antonopoulos AS, Oikonomou E, et al. Impairment of arterial elastic properties and elevated circulating levels of transforming growth factor-beta in subjects with repaired coarctation of aorta. Int J Cardiol. 2016;207:282–3.

    Article  PubMed  Google Scholar 

  94. Bentzon JF, Weile C, Sondergaard CS, Hindkjaer J, Kassem M, Falk E. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:2696–702.

    Article  CAS  PubMed  Google Scholar 

  95. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71.

    Article  CAS  PubMed  Google Scholar 

  96. Motoyama S, Ito H, Sarai M, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol. 2015;66:337–46.

    Article  PubMed  Google Scholar 

  97. Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J. 2004;25:1077–82.

    Article  PubMed  Google Scholar 

  98. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.

    Article  PubMed  Google Scholar 

  99. Arbustini E, Dal Bello B, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Masci PG, Doulaptsis C, Bertella E, et al. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail. 2014;7:448–56.

    Article  PubMed  Google Scholar 

  101. Eickelberg O, Roth M, Mussmann R, et al. Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-kappaB in primary human vascular smooth muscle cells. Circulation. 1999;99:2276–82.

    Article  CAS  PubMed  Google Scholar 

  102. Funck RC, Wilke A, Rupp H, Brilla CG. Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Adv Exp Med Biol. 1997;432:35–44.

    Article  CAS  PubMed  Google Scholar 

  103. Death AK, Nakhla S, McGrath KC, et al. Nitroglycerin upregulates matrix metalloproteinase expression by human macrophages. J Am Coll Cardiol. 2002;39:1943–50.

    Article  CAS  PubMed  Google Scholar 

  104. Tousoulis D, Antoniades C, Vasiliadou C, et al. Effects of atorvastatin and vitamin C on forearm hyperaemic blood flow, asymmetrical dimethylarginine levels and the inflammatory process in patients with type 2 diabetes mellitus. Heart. 2007;93:244–6.

    Article  CAS  PubMed  Google Scholar 

  105. Tousoulis D, Charakida M, Stefanadi E, Siasos G, Latsios G, Stefanadis C. Statins in heart failure: beyond the lipid lowering effect. Int J Cardiol. 2007;115:144–50.

    Article  PubMed  Google Scholar 

  106. Ikeda U, Shimpo M, Ohki R, et al. Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells. Hypertension. 2000;36:325–9.

    Article  CAS  PubMed  Google Scholar 

  107. Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1671–8.

    Article  CAS  PubMed  Google Scholar 

  108. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926–33.

    Article  CAS  PubMed  Google Scholar 

  109. Cipollone F, Fazia M, Iezzi A, et al. Suppression of the functionally coupled cyclooxygenase-2/prostaglandin E synthase as a basis of simvastatin-dependent plaque stabilization in humans. Circulation. 2003;107:1479–85.

    Article  CAS  PubMed  Google Scholar 

  110. Li MJ, Huang CX, Okello E, Yanhong T, Mohamed S. Treatment with spironolactone for 24 weeks decreases the level of matrix metalloproteinases and improves cardiac function in patients with chronic heart failure of ischemic etiology. Can J Cardiol. 2009;25:523–6.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Weir RA, Mark PB, Petrie CJ, et al. Left ventricular remodeling after acute myocardial infarction: does eplerenone have an effect? Am Heart J. 2009;157:1088–96.

    Article  PubMed  Google Scholar 

  112. Derosa G, Maffioli P, D'Angelo A, et al. Effects of long chain omega-3 fatty acids on metalloproteinases and their inhibitors in combined dyslipidemia patients. Expert Opin Pharmacother. 2009;10:1239–47.

    Article  CAS  PubMed  Google Scholar 

  113. Oikonomou E, Vogiatzi G, Karlis D, et al. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin Nutr. Epub 2018 May 3. https://doi.org/10.1016/j.clnu.2018.04.017.

  114. Wu TC, Chen YH, Leu HB, et al. Carvedilol, a pharmacological antioxidant, inhibits neointimal matrix metalloproteinase-2 and -9 in experimental atherosclerosis. Free Radic Biol Med. 2007;43:1508–22.

    Article  CAS  PubMed  Google Scholar 

  115. Gonzalez GE, Cassaglia P, Noli Truant S, et al. Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol. 2014;176:1423–5.

    Article  PubMed  Google Scholar 

  116. Mason JW, O'Connell JB, Herskowitz A, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med. 1995;333:269–75.

    Article  CAS  PubMed  Google Scholar 

  117. Herum KM, Lunde IG, Skrbic B, et al. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc Res. 2015;106:217–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oikonomou, E., Tousoulis, D. (2019). Fibrosis–Inflammation of the Cardiovascular System. In: Cokkinos, D. (eds) Myocardial Preservation. Springer, Cham. https://doi.org/10.1007/978-3-319-98186-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98186-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98185-7

  • Online ISBN: 978-3-319-98186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics