Advertisement

Nuclear Fusion pp 237-343 | Cite as

Plasma Heating in Magnetic Fusion Devices

  • Edward Morse
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The history of magnetic confinement plasma heating methods is given. The difficulty in using ohmic heating to heat reactor-grade plasmas to thermonuclear temperatures is shown. Neutral beam injection (NBI) techniques are described from the standpoint of the atomic physics of neutralization, accelerator current density limits (the Child-Langmuir law), and ion optics. The need for negative ion beams for penetration of large plasmas is shown. The current design of the ITER NBI system is shown. Radiofrequency (RF) heating approaches are described, with the details of RF wave propagation shown through the cold-plasma dispersion relation, accessibility and the CMA diagram, and then the warm-plasma dispersion relations. Ray tracing techniques are described, along with a discussion of tunneling and mode conversion. Nonlinear effects leading to heating and current drive at lower hybrid (LH) and electron cyclotron resonance frequency (ECRF) are discussed. Ion cyclotron range of frequency (ICRF) systems are discussed from an accessibility viewpoint and from the antenna design viewpoint. The technology required for these frequency bands, including the power sources such as tetrodes (ICRF), klystrons (LH), gyrotrons and quasioptical devices (ECRF), and the transmission systems including coaxial cables (ICRF), waveguides (LH and ECRF), and quasioptical transmission (ECRF) are described, with emphasis on the current ITER RF heating and current drive systems.

Keywords

Ohmic heating Neutral beam injection (NBI) Charge exchange (NBI) Child-Langmuir law Negative ions RF heating Cold-plasma dispersion relation CMA diagram RF accessibility Warm-plasma dispersion relation Ion cyclotron heating Lower hybrid heating Lower hybrid current drive Electron cyclotron heating Electron cyclotron current drive RF transmission lines Waveguides Tetrodes Klystrons Gyrotrons Quasioptical transmission 

References

  1. 1.
    Alberti, S., Tran, M.Q., Hogge, J.P., Tran, T.M., Bondeson, A., Muggli, P., Perrenoud, A., Jödicke, B., Mathews, H.G.: Experimental measurements on a 100 GHz frequency tunable quasioptical gyrotron. Phys. Fluids B: Plasma Phys. 2(7), 1654–1661 (1990). http://dx.doi.org/10.1063/1.859439 Google Scholar
  2. 2.
    Alikaev, V., Arsenyev, Y.: High frequency power sources applied for plasma heating in TM-3 Tokamak. Conference report (1977). www.iaea.org/inis/collection/NCLCollectionStore/_Public/08/308/8308213.pdf
  3. 3.
    Alikaev, V., Bobrovskij, G., Ofitserov, M., Poznyak, V., Razumova, K.: Electron-cyclotron heating at the tokamak TM-3. Zh. Eksp. Teor. Fiz. Pis’ma Red. 15, 33–36 (1972)Google Scholar
  4. 4.
    Alikaev, V.V., et al.: Investigation of the electron energy distribution function and its variation during electron cyclotron resonance heating. In: Plasma Physics and Controlled Nuclear Fusion Research (Proceedings of International Conference, 5th, Tokyo, Japan, 1974), vol. I, p. 241 (1975)Google Scholar
  5. 5.
    Allis, W.P.: Waves in a plasma. Sherwood Coference Controlled Fusion, TID-7582, p. 32 (27–28 April 1959). Also in MIT Research Laboratory of Electronics Quarterly Progress Report 54, 5 (1959).Google Scholar
  6. 6.
    Allis, W.P., Buchsbaum, S.J., Bers, A.: Waves in Anisotropic Plasmas. MIT Press, Cambridge (1963). ISBN 0-262-51155-XGoogle Scholar
  7. 7.
    Allison, S.K., Garcia-Munoz, M.: Electron capture and loss at high energies. Pure Appl. Phys. 13, 721–782 (1962). Atomic and Molecular Processes, http://dx.doi.org/10.1016/B978-0-12-081450-3.50023-0; http://www.sciencedirect.com/science/article/pii/B9780120814503500230
  8. 8.
    Antonsen, T.M., Hui, B.: The generation of current in tokamaks by the absorption of waves in the electron cyclotron frequency range. IEEE Trans. Plasma Sci. PS-12(2), 118 (1984)Google Scholar
  9. 9.
    Barnett, C.F., Ray, J.A., Thompson, J.C.: Atomic and molecular collision cross sections of interest in controlled thermonuclear research. Oak Ridge National Laboratory techical report, ORNL-3113(revised), pp. 1–332 (1964)Google Scholar
  10. 10.
    Belo, J., Bibet, P., Missirlian, M., Achard, J., Beaumont, B., Bertrand, B., Chantant, M., Chappuis, P., Doceul, L., Durocher, A., Gargiulo, L., Saille, A., Samaille, F., Villedieu, E.: ITER-like PAM launcher for Tore Supra’s LHCD system. Fusion Eng. Des. 74(1), 283–288 (2005). Proceedings of the 23rd Symposium of Fusion Technology, http://dx.doi.org/10.1016/j.fusengdes.2005.06.173; http://www.sciencedirect.com/science/article/pii/S0920379605003315
  11. 11.
    Bengtson, R., Benesch, J., Chen, G.L., Evans, T., Li, Y.M., Lin, S.H., Mahajan, S., Michie, R., Oakes, M., Ross, D., Valanju, P., Surko, C.: Alfvén wave heating in the PRETEXT tokamak– experiments and theory. In: Gormezano, C., Leotta, G., Sindoni, E. (eds.) Heating in Toroidal Plasmas 1982, pp. 151–160. Pergamon, Oxford (1982). https://doi.org/10.1016/B978-1-4832-8428-6.50023-0; http://www.sciencedirect.com/science/article/pii/B9781483284286500230 Google Scholar
  12. 12.
    Berkner, K.H., Morgan, T.J., Pyle, R.V., Stearns, J.W.: Collision cross sections of 400- to 1800-kev \(\mathrm {H}_{3}^{}{ }_{}{ }^{+}\) ions in collisions with H2 and N2 gases and Li Vapor. Phys. Rev. A 8, 2870–2876 (1973). https://link.aps.org/doi/10.1103/PhysRevA.8.2870 Google Scholar
  13. 13.
    Berkner, K., Pyle, R., Stearns, J.: Intense, mixed-energy hydrogen beams for CTR injection. Nucl. Fusion 15(2), 249 (1975). http://stacks.iop.org/0029-5515/15/i=2/a=009 Google Scholar
  14. 14.
    Bernabei, S., Daughney, C., Efthimion, P., Hooke, W., Hosea, J., Jobes, F., Martin, A., Mazzucato, E., Meservey, E., Motley, R., Stevens, J., Goeler, S.V., Wilson, R.: Lower-hybrid current drive in the PLT tokamak. Phys. Rev. Lett. 49, 1255–1258 (1982). https://link.aps.org/doi/10.1103/PhysRevLett.49.1255 Google Scholar
  15. 15.
    Bernstein, I.B.: Waves in a plasma in a magnetic field. Phys. Rev. 109, 10–21 (1958). https://link.aps.org/doi/10.1103/PhysRev.109.10 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Biskamp, D.: Anomalous resistivity and viscosity due to small-scale magnetic turbulence. Plasma Phys. Controll. Fusion 26(1B), 311 (1984). http://stacks.iop.org/0741-3335/26/i=1B/a=004 MathSciNetGoogle Scholar
  17. 17.
    Bonoli, P.T., Ott, E.: Toroidal and scattering effects on lower-hybrid wave propagation. Phys. Fluids 25(2), 359–375 (1982). http://aip.scitation.org/doi/abs/10.1063/1.863744 zbMATHGoogle Scholar
  18. 18.
    Buchsbaum, S.J.: Ion resonance in a multicomponent plasma. Phys. Rev. Lett. 5, 495–497 (1960). https://link.aps.org/doi/10.1103/PhysRevLett.5.495 Google Scholar
  19. 19.
    Budden, K.G.: The non-existence of a “Fourth Reflection Coefficient” for radio waves in the ionosphere. In: Physics of the Ionosphere: Report of the Physical Society Conference Cavendish Laboratory, p. 320 (1955)Google Scholar
  20. 20.
    Chitarin, G., Agostinetti, P., Aprile, D., Marconato, N., Veltri, P.: Cancellation of the ion deflection due to electron-suppression magnetic field in a negative-ion accelerator. Rev. Sci. Instrum. 85(2), 02B317 (2014). http://dx.doi.org/10.1063/1.4826581 Google Scholar
  21. 21.
    Clemmmow, P.C., Mullaly, R.F.: Dependence of the refractive index in magneto-ionic theory on the direction of the wave normal. In: Physics of the Ionosphere: Report of the Physical Society Conference Cavendish Laboratory, p. 340 (1955)Google Scholar
  22. 22.
    Cohen, R.H.: Effect of trapped electrons on current drive. Phys. Fluids 30(8), 2442–2449 (1987). http://aip.scitation.org/doi/abs/10.1063/1.866136 zbMATHGoogle Scholar
  23. 23.
    Colas, L., Giruzzi, G.: Anomalous resistivity of a toroidal plasma in the presence of magnetic turbulence. Nucl. Fusion 33(1), 156 (1993). http://stacks.iop.org/0029-5515/33/i=1/a=I16 Google Scholar
  24. 24.
    Danilov, I., Heidinger, R., Meier, A., Spaeh, P.: Torus window development for the ITER ECRH upper launcher. In: Twenty Seventh International Conference on Infrared and Millimeter Waves, pp. 161–162. IEEE, Piscataway (2002). https://doi.org/110.1109/ICIMW.2002.1076045
  25. 25.
    de Chambrier, A., Cheetham, A., Heym, A., Hofmann, F., Joye, B., Keller, R., Lietti, A., Lister, J., Pochelon, A., Simm, W., Toninato, J., Tuszel, A.: Alfvén wave absorption studies in TCA . In: Gormezano, C., Leotta, G., Sindoni, E. (eds.) Heating in Toroidal Plasmas 1982, pp. 161–172. Pergamon, Oxford (1982). https://doi.org/10.1016/B978-1-4832-8428-6.50024-2; http://www.sciencedirect.com/science/article/pii/B9781483284286500242 Google Scholar
  26. 26.
    de Esch, H., Kashiwagi, M., Taniguchi, M., Inoue, T., Serianni, G., Agostinetti, P., Chitarin, G., Marconato, N., Sartori, E., Sonato, P., Veltri, P., Pilan, N., Aprile, D., Fonnesu, N., Antoni, V., Singh, M., Hemsworth, R., Cavenago, M.: Physics design of the HNB accelerator for ITER. Nucl. Fusion 55(9), 096001 (2015). http://stacks.iop.org/0029-5515/55/i=9/a=096001 Google Scholar
  27. 27.
    Demirkhanov, R.A., Kirov, A.G., Stotland, M.A., Malik, N.I.: Investigations of plasma equilibrium in a torus with high frequency and longitudinal static magnetic fields. In: Lehnert, B. (ed.) Second European Conference on Controlled Fusion and Plasma Physics (1968). Plasma Physics, vol. 10, p. 444 (1968). http://stacks.iop.org/0032-1028/10/i=4/a=308
  28. 28.
    Demirkhanov, R., Kirov, A., Lozovskij, S., Nekrasov, F., Elfimov, A., Il’inskij, S., Onishenko, V.: Plasma heating in a toroidal system by a helical quadrupole RF field with ω < ω Bi. In: Plasma Physics and Controlled Nuclear Fusion Research 1976, vol. 3, pp. 31–37 (1977)Google Scholar
  29. 29.
    Derfler, H., Simonen, T.C.: Experimental verification of Landau waves in an isotropic electron plasma. J. Appl. Phys. 38(13), 5014–5020 (1967). http://dx.doi.org/10.1063/1.1709269 Google Scholar
  30. 30.
    Diem, S.J., Taylor, G., Caughman, J.B., Bigelow, T., Garstka, G.D., Harvey, R.W., LeBlanc, B.P., Preinhaelter, J., Sabbagh, S.A., Urban, J., Wilgen, J.B.: Electron Bernstein wave research on NSTX and PEGASUS. In: Ryan, P., Rasmussen, D. (eds.) Radio Frequency Power in Plasmas. American Institute of Physics Conference Series, vol. 933, pp. 331–338 (2007). https://doi.org/10.1063/1.2800504 Google Scholar
  31. 31.
    Dikij, A., Kalinchenko, S., Kuznetsov, Y., Kurilko, P., Lysojvan, A., Pashney, V., Tarasenko, V., Suprunenko, V., Tolok, V., Shvets, O.: High-frequency heating and equilibrium plasmas in the URAGAN-2 stellarator. In: Plasma Physics and Controlled Nuclear Fusion Research 1976, vol. 2, pp. 129–143 (1977)Google Scholar
  32. 32.
    Doane, J.: Design of circular corrugated waveguides to transmit millimeter waves at ITER. Fusion Sci. Technol. 53(1), 159–173 (2008).  https://doi.org/10.13182/FST08-A1662 Google Scholar
  33. 33.
    Doane, J.L., Moeller, C.P.: He11 mitre bends and gaps in a circular corrugated waveguide. Int. J. Electron. 77(4), 489–509 (1994). http://dx.doi.org/10.1080/00207219408926081 Google Scholar
  34. 34.
    Durodié, F., Vrancken, M., Bamber, R., Colas, L., Dumortier, P., Hancock, D., Huygen, S., Lockley, D., Louche, F., Maggiora, R., Milanesio, D., Messiaen, A., Nightingale, M.P.S., Shannon, M., Tigwell, P., Schoor, M.V., Wilson, D., and the CYCLE Team, K.W.: Performance assessment of the ITER ICRF antenna. AIP Conf. Proc. 1580(1), 362–365 (2014). http://aip.scitation.org/doi/abs/10.1063/1.4864563
  35. 35.
    Erckmann, V., Gasparino, U.: Electron cyclotron resonance heating and current drive in toroidal fusion plasmas. Plasma Phys. Controll. Fusion 36(12), 1869 (1994). http://stacks.iop.org/0741-3335/36/i=12/a=001 Google Scholar
  36. 36.
    Fisch, N.J.: Confining a tokamak plasma with RF-driven currents. Phys. Rev. Lett. 41, 873–876 (1978). https://link.aps.org/doi/10.1103/PhysRevLett.41.873 Google Scholar
  37. 37.
    Fried, B.D., Conte, S.D.: The Plasma Dispersion Function. Academic Press, Cambridge (1961). https://doi.org/10.1016/B978-1-4832-2929-4.50009-5; http://www.sciencedirect.com/science/book/9781483229294
  38. 38.
    Glyavin, M.Y., Luchinin, A.G., Manuilov, V.N.: Nonparaxial magnetron injection gun for a high-power pulsed submillimeter-wave gyrotron. Radiophys. Quantum Electron. 52(2), 150–156 (2009). https://doi.org/10.1007/s11141-009-9114-2 Google Scholar
  39. 39.
    Golant, V.E.: Plasma penetration near the lower hybrid frequency. Zh. Tekh. Fiz. 41, 2492 (1971). English translation: Sov. Phys.-Tech. Phys. 16, 1980 (1972)Google Scholar
  40. 40.
    Golant, V., Fedorov, V.: RF Plasma Heating in Toroidal Fusion Devices. Plenum Publishing Corp, New York (1989)Google Scholar
  41. 41.
    Golovato, S.N., Shohet, J.L.: Plasma heating by Alfvén wave excitation in the Proto-Cleo stellarator. Phys. Fluids 21(8), 1421–1427 (1978). http://aip.scitation.org/doi/abs/10.1063/1.862385 Google Scholar
  42. 42.
    Goniche, M., Mhari, C.E., Francisquez, M., Anza, S., Belo, J., Hertout, P., Hillairet, J.: Modelling of power limit in RF antenna waveguides operated in the lower hybrid range of frequency. Nucl. Fusion 54(1), 013003 (2014). http://stacks.iop.org/0029-5515/54/i=1/a=013003 Google Scholar
  43. 43.
    Hagelaar, G.J.M., Boeuf, J.P., Simonin, A.: Modeling of an inductive negative ion source for neutral beam injection. AIP Conf. Proc. 993(1), 55–60 (2008). http://aip.scitation.org/doi/abs/10.1063/1.2909176 Google Scholar
  44. 44.
    Halbach, K.: Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 169(1), 1–10 (1980). http://dx.doi.org/10.1016/0029-554X(80)90094-4; http://www.sciencedirect.com/science/article/pii/0029554X80900944 MathSciNetGoogle Scholar
  45. 45.
    Hamilton, W.: Theory on systems of waves. Trans. R. Ir. Acad. 15, 69–174 (1828). https://books.google.com/books?id=TpY_AAAAYAAJ&pg=PA69#v=onepage&q&f=false Google Scholar
  46. 46.
    Hansen, F.R., Lynov, J.P., Michelsen, P.: The O-X-B mode conversion scheme for ecrh of a high-density tokamak plasma. Plasma Phys. Controll. Fusion 27(10), 1077 (1985). http://stacks.iop.org/0741-3335/27/i=10/a=002 Google Scholar
  47. 47.
    Hansen, F.R., Lynov, J.P., Maroli, C., Petrillo, V.: Full-wave calculations of the O-X mode conversion process. J. Plasma Phys. 39(2), 319–337 (1988). https://doi.org/10.1017/S0022377800013064 Google Scholar
  48. 48.
    Hatch, A.J., Williams, H.B.: Multipacting modes of high-frequency gaseous breakdown. Phys. Rev. 112, 681–685 (1958). https://link.aps.org/doi/10.1103/PhysRev.112.681 Google Scholar
  49. 49.
    Hemsworth, R., Decamps, H., Graceffa, J., Schunke, B., Tanaka, M., Dremel, M., Tanga, A., Esch, H.D., Geli, F., Milnes, J., Inoue, T., Marcuzzi, D., Sonato, P., Zaccaria, P.: Status of the ITER heating neutral beam system. Nucl. Fusion 49(4), 045006 (2009). http://stacks.iop.org/0029-5515/49/i=4/a=045006 Google Scholar
  50. 50.
    Henderson, M., Heidinger, R., Strauss, D., Bertizzolo, R., Bruschi, A., Chavan, R., Ciattaglia, E., Cirant, S., Collazos, A., Danilov, I., Dolizy, F., Duron, J., Farina, D., Fischer, U., Gantenbein, G., Hailfinger, G., Kasparek, W., Kleefeldt, K., Landis, J.D., Meier, A., Moro, A., Platania, P., Plaum, B., Poli, E., Ramponi, G., Saibene, G., Sanchez, F., Sauter, O., Serikov, A., Shidara, H., Sozzi, C., Spaeh, P., Udintsev, V., Zohm, H., Zucca, C.: Overview of the ITER EC upper launcher. Nucl. Fusion 48(5), 054013 (2008). http://stacks.iop.org/0029-5515/48/i=5/a=054013 Google Scholar
  51. 51.
    Henning, F.D., Mace, R.L., Pillay, S.R.: Electrostatic Bernstein waves in plasmas whose electrons have a dual kappa distribution: applications to the saturnian magnetosphere. J. Geophys. Res.: Space Phys. 116(A12), A12203 (2011). http://dx.doi.org/10.1029/2011JA016965 Google Scholar
  52. 52.
    Henriksson, H., Conroy, S., Ericsson, G., Gorini, G., Hjalmarsson, A., Källne, J., Tardocchi, M., contributors to the EFDA-JET Workprogramme: Neutron emission from JET DT plasmas with rf heating on minority hydrogen. Plasma Phys. Controll. Fusion 44(7), 1253 (2002). http://stacks.iop.org/0741-3335/44/i=7/a=314 Google Scholar
  53. 53.
    Heppenheimer, T.A.: The Man-Made Sun: The Quest for Fusion Power. Little, Brown, Boston (1983). See also http://history.nasa.gov/SP-4305/ch2.htm
  54. 54.
    Herrmannsfeldt, W.B.: Electron trajectory program. SLAC Report, vol. 226, pp. 1–118 (1979). http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-226.pdf Google Scholar
  55. 55.
    Hiskes, J.R., Karo, A.M.: Generation of negative ions in tandem high-density hydrogen discharges. J. Appl. Phys. 56(7), 1927–1938 (1984). http://dx.doi.org/10.1063/1.334237 Google Scholar
  56. 56.
    Hoang, G., Bécoulet, A., Jacquinot, J., Artaud, J., Bae, Y., Beaumont, B., Belo, J., Berger-By, G., Bizarro, J.P., Bonoli, P., Cho, M., Decker, J., Delpech, L., Ekedahl, A., Garcia, J., Giruzzi, G., Goniche, M., Gormezano, C., Guilhem, D., Hillairet, J., Imbeaux, F., Kazarian, F., Kessel, C., Kim, S., Kwak, J., Jeong, J., Lister, J., Litaudon, X., Magne, R., Milora, S., Mirizzi, F., Namkung, W., Noterdaeme, J., Park, S., Parker, R., Peysson, Y., Rasmussen, D., Sharma, P., Schneider, M., Synakowski, E., Tanga, A., Tuccillo, A., Wan, Y.: A lower hybrid current drive system for ITER. Nucl. Fusion 49(7), 075001 (2009). http://stacks.iop.org/0029-5515/49/i=7/a=075001 Google Scholar
  57. 57.
    Hoang, G.T., Delpech, L., Ekedahl, A., Bae, Y.S., Achard, J., Berger-By, G., Cho, M.H., Decker, J., Dumont, R., Do, H., Goletto, C., Goniche, M., Guilhem, D., Hillairet, J., Kim, H., Mollard, P., Namkung, W., Park, S., Park, H., Peysson, Y., Poli, S., Prou, M., Preynas, M., Sharma, P.K., Yang, H.L., Tore Supra Team: Advances in lower hybrid current drive for tokamak long pulse operation: technology and physics. Plasma Fusion Res. 7, 2502140 (2012). http://www.jspf.or.jp/PFR/PFR_articles/pfr2012S1/pfr2012_07-2502140.html Google Scholar
  58. 58.
    Hogge, J.P., Tran, T.M., Paris, P.J., Tran, M.Q.: Operation of a quasi-optical gyrotron with a gaussian output coupler. Phys. Plasmas 3(9), 3492–3500 (1996). http://dx.doi.org/10.1063/1.871499 Google Scholar
  59. 59.
    Ignat, D.W.: Toroidal effects on propagation, damping, and linear mode conversion of lower hybrid waves. Phys. Fluids 24(6), 1110–1114 (1981). http://aip.scitation.org/doi/abs/10.1063/1.863500 zbMATHGoogle Scholar
  60. 60.
    Inoue, T., Tobari, H., Takado, N., Hanada, M., Kashiwagi, M., Hatayama, A., Wada, M., Sakamoto, K.: Negative ion production in cesium seeded high electron temperature plasmas. Rev. Sci. Instrum. 79(2), 02C112 (2008). http://aip.scitation.org/doi/abs/10.1063/1.2823899 Google Scholar
  61. 61.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  62. 62.
    Kajiwara, K., Takahashi, K., Kobayashi, N., Kasugai, A., Sakamoto, K.: Design of a high power millimeter wave launcher for EC H&CD system on ITER. Fusion Eng. Des. 84(1), 72–77 (2009). https://doi.org/10.1016/j.fusengdes.2008.10.003; http://www.sciencedirect.com/science/article/pii/S0920379608003050 Google Scholar
  63. 63.
    Karney, C.F.F., Fisch, N.J.: Numerical studies of current generation by radio-frequency traveling waves. Phys. Fluids 22(9), 1817–1824 (1979). http://aip.scitation.org/doi/abs/10.1063/1.862787 Google Scholar
  64. 64.
    Kartikeyan, M.V., Borie, E., Thumm, M.K.A.: Review of Gyro-Devices, pp. 7–24. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-07637-8_2 Google Scholar
  65. 65.
    Kirov, A.G., Rouchko, L., Sukachov, A., Meleta, E., Kadysh, I.: MHD resonant HF heating in the R-OM stellarator. In: 9th European Conference on Controlled Fusion and Plasma Physics, Oxford, 17–21 September 1979, vol. 1, p. 18 (1979)Google Scholar
  66. 66.
    Kisel, D.V., Korablev, G.S., Navalyev, V.G., Petelin, M.I., Tsimring, S.Y.: Radio Eng. Electron. Phys. 19(4) 781–788 (1974)Google Scholar
  67. 67.
    Kishek, R.A., Lau, Y.Y., Ang, L.K., Valfells, A., Gilgenbach, R.M.: Multipactor discharge on metals and dielectrics: Historical review and recent theories. Phys. Plasmas 5(5), 2120–2126 (1998). http://dx.doi.org/10.1063/1.872883 Google Scholar
  68. 68.
    Kowalski, E., Tax, D., Shapiro, M., Sirigiri, J., Temkin, R., Bigelow, T., Rasmussen, D.: Linearly polarized modes of a corrugated metallic waveguide. MIT report, PSFC/JA-10-61 (2010). https://dspace.mit.edu/bitstream/handle/1721.1/94403/10ja061_full.pdf?sequence=1
  69. 69.
    Krall, N., Trivelpiece, A.: Principles of Plasma Physics. Volumes 0-911351. International Series in Pure and Applied Physics. McGraw-Hill, New York (1973). https://books.google.com/books?id=b0BRAAAAMAAJ Google Scholar
  70. 70.
    Kuprianvov, S.E., Tunitski, N.N., Pyerov, A.A.: Studies of dissociation of D+ ions from molecular collisions in the area of energies 3.5 → 100 keV. Zh. Tekh. Fiz. 33, 1252 (1963)Google Scholar
  71. 71.
    Lamalle, P.U., Beaumont, B., Gassmann, T., Kazarian, F., Arambhadiya, B., et al.: Status of the ITER IC H&CD System. AIP Conf. Proc. 1187, 265 (2009). http://aip.scitation.org/doi/abs/10.1063/1.3273744 Google Scholar
  72. 72.
    Landau, L.D.: On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 25 (1946)Google Scholar
  73. 73.
    Landau, L.D., Lifshitz, E.M.: The classical theory of fields. Addison-Wesley, Boston (1951). Translated by M. HamermeshGoogle Scholar
  74. 74.
    Leung, K., Bachman, D., Herz, P., McDonald, D.: RF driven multicusp ion source for pulsed or steady-state ion beam production. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 74(1), 291–294 (1993). http://dx.doi.org/10.1016/0168-583X(93)95063-B; http://www.sciencedirect.com/science/article/pii/0168583X9395063B Google Scholar
  75. 75.
    Lloyd, B.: Overview of ECRH experimental results. Plasma Phys. Controll. Fusion 40(8A), A119 (1998). http://stacks.iop.org/0741-3335/40/i=8A/a=010 Google Scholar
  76. 76.
    Lotz, W.: Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium. Z. Phys. 216(3), 241–247 (1968). http://dx.doi.org/10.1007/BF01392963 Google Scholar
  77. 77.
    Malmberg, J.H., Wharton, C.B.: Dispersion of electron plasma waves. Phys. Rev. Lett. 17, 175–178 (1966). https://link.aps.org/doi/10.1103/PhysRevLett.17.175 Google Scholar
  78. 78.
    Manheimer, W.M., Boris, J.P.: Self-consistent theory of a collisionless resistive shock. Phys. Rev. Lett. 28, 659–662 (1972). https://link.aps.org/doi/10.1103/PhysRevLett.28.659 Google Scholar
  79. 79.
    Marcuzzi, D., Palma, M.D., Pavei, M., Heinemann, B., Kraus, W., Riedl, R.: Detailed design of the RF source for the 1MV neutral beam test facility. Fusion Eng. Des. 84(7), 1253–1258 (2009). Proceeding of the 25th Symposium on Fusion Technology, http://dx.doi.org/10.1016/j.fusengdes.2008.12.084; http://www.sciencedirect.com/science/article/pii/S0920379608005413.
  80. 80.
    McClure, G.W.: Charge exchange and dissociation of H+, \({\mathrm {H}}_{2}^{+}\), and \({\mathrm {H}}_{3}^{+}\) ions incident on H2 gas. Phys. Rev. 130, 1852–1859 (1963). https://link.aps.org/doi/10.1103/PhysRev.130.1852 Google Scholar
  81. 81.
    McClure, G.W.: Differential angular distribution of H and H+ dissociation fragments of fast \({\mathrm {H}}_{2}^{+}\) ions incident on H2 gas. Phys. Rev. 140, A769–A778 (1965). https://link.aps.org/doi/10.1103/PhysRev.140.A769 Google Scholar
  82. 82.
    McClure, G.W.: Dissociation of \(\mathrm {H}_{2}^{}{ }_{}{ }^{+}\) ions in collision with H Atoms: 3 to 115 kev. Phys. Rev. 153, 182–183 (1967). https://link.aps.org/doi/10.1103/PhysRev.153.182 Google Scholar
  83. 83.
    McNeely, P., Falter, H.D., Fantz, U., Franzen, P., Fröschle, M., Heinemann, B., Kraus, W., Martens, C., Riedl, R., Speth, E.: Development of a rf negative-ion source for ITER neutral beam injection. Rev. Sci. Instrum. 77(3), 03A519 (2006). http://dx.doi.org/10.1063/1.2166246 Google Scholar
  84. 84.
    Mjølhus, E.: Coupling to z mode near critical angle. J. Plasma Phys. 31(1), 7–28 (1984). https://doi.org/10.1017/S0022377800001392 MathSciNetGoogle Scholar
  85. 85.
    Obiki, T., Mutoh, T., Adachi, S., Sasaki, A., Iiyoshi, A., Uo, K.: Alfvén-wave heating experiment in the Heliotron-D. Phys. Rev. Lett. 39, 812–815 (1977). https://link.aps.org/doi/10.1103/PhysRevLett.39.812 Google Scholar
  86. 86.
    Pamela, J.: A model for negative ion extraction and comparison of negative ion optics calculations to experimental results. Rev. Sci. Instrum. 62(5), 1163–1172 (1991). http://dx.doi.org/10.1063/1.1141995 Google Scholar
  87. 87.
    Park, J.K., Goldston, R., Crocker, N., Fredrickson, E., Bell, M., Maingi, R., Tritz, K., Jaworski, M., Kubota, S., Kelly, F., Gerhardt, S., Kaye, S., Menard, J., Ono, M.: Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna. Nucl. Fusion 54(4), 043013 (2014). http://stacks.iop.org/0029-5515/54/i=4/a=043013 Google Scholar
  88. 88.
    Paul, J.W.M., Goldenbaum, G.C., Iiyoshi, A., Holmes, L.S., Hardcastle, R.A.: Measurement of electron temperatures produced by collisionless shock waves in a magnetized plasma. Nature 216, 363 (1967). http://dx.doi.org/10.1038/216363a0 Google Scholar
  89. 89.
    Pivovar, L.I., Tubaev, V.M., Novikov, M.T.: Dissociation of molecular hydrogen ions in collisions with gas molecules. J. Exp. Theor. Phys. 13, 23 (1961)Google Scholar
  90. 90.
    Prater, R., Farina, D., Gribov, Y., Harvey, R., Ram, A., Lin-Liu, Y.R., Poli, E., Smirnov, A., Volpe, F., Westerhof, E., Zvonkov, A., the ITPA Steady State Operation Topical Group: Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions. Nucl. Fusion 48(3), 035006 (2008). http://stacks.iop.org/0029-5515/48/i=3/a=035006 Google Scholar
  91. 91.
    Riviere, A.: Penetration of fast hydrogen atoms into a fusion reactor plasma. Nucl. Fusion 11(4), 363 (1971). http://stacks.iop.org/0029-5515/11/i=4/a=006 Google Scholar
  92. 92.
    Ryutov, D.D., Derzon, M.S., Matzen, M.K.: The physics of fast z-pinches. Sandia National Laboratory Report, SAND98-1632 (1998). https://www.osti.gov/scitech/servlets/purl/291043
  93. 93.
    Scheuring, A., Probst, P., Stockhausen, A., Ilin, K., Siegel, M., Scherer, T.A., Meier, A., Strauss, D.: Dielectric rf properties of CVD diamond disks from sub-mm wave to THz frequencies. In: 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome 2010, pp. 1–2. IEEE, Piscataway (2010).  https://doi.org/10.1109/ICIMW.2010.5612543
  94. 94.
    Schmitt, J.P.M.: The magnetoplasma dispersion function: some mathematical properties. J. Plasma Phys. 12(1), 51–59 (1974). https://doi.org/10.1017/S0022377800024922 Google Scholar
  95. 95.
    Shevchenko, V., O’Brien, M., Taylor, D., Saveliev, A., team, M.: Electron Bernstein wave assisted plasma current start-up in mast. Nucl. Fusion 50(2), 022004 (2010). http://stacks.iop.org/0029-5515/50/i=2/a=022004 Google Scholar
  96. 96.
    Soumagne, G., Alberti, S., Hogge, J.P., Pedrozzi, M., Siegrist, M.R., Tran, M.Q., Tran, T.M.: Measurement of the parallel velocity distribution function of the electron beam in a quasi-optical gyrotron by electron cyclotron emission. Phys. Plasmas 3(9), 3501–3506 (1996). http://dx.doi.org/10.1063/1.871500 Google Scholar
  97. 97.
    Speth, E., Falter, H., Franzen, P., Fantz, U., Bandyopadhyay, M., Christ, S., Encheva, A., Fröschle, M., Holtum, D., Heinemann, B., Kraus, W., Lorenz, A., Martens, C., McNeely, P., Obermayer, S., Riedl, R., Süss, R., Tanga, A., Wilhelm, R., Wünderlich, D.: Overview of the RF source development programme at IPP Garching. Nucl. Fusion 46(6), S220 (2006). http://stacks.iop.org/0029-5515/46/i=6/a=S03 Google Scholar
  98. 98.
    Spitzer, L., Härm, R.: Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977–981 (1953). http://link.aps.org/doi/10.1103/PhysRev.89.977 zbMATHGoogle Scholar
  99. 99.
    Stix, T.: The Theory of Plasma Waves. McGraw-Hill Advanced Physics Monograph Series. McGraw-Hill, New York (1962). https://books.google.com/books?id=eZ48AAAAIAAJ
  100. 100.
    Stix, T.H.: Radiation and absorption via mode conversion in an inhomogeneous collision-free plasma. Phys. Rev. Lett. 15, 878–882 (1965). https://link.aps.org/doi/10.1103/PhysRevLett.15.878 Google Scholar
  101. 101.
    Stix, T.: Waves in Plasmas. American Institute of Physics, Melville (1992). https://books.google.com/books?id=OsOWJ8iHpmMC Google Scholar
  102. 102.
    Stix, T.H., Palladino, R.W.: Observation of ion cyclotron waves. Phys. Fluids 3(4), 641–647 (1960). http://aip.scitation.org/doi/abs/10.1063/1.1706099 Google Scholar
  103. 103.
    Stratton, J.: Electromagnetic Theory. International Series in Pure and Applied Physics. McGraw-Hill book company, New York (1941). https://books.google.com/books?id=LiZRAAAAMAAJ zbMATHGoogle Scholar
  104. 104.
    Strauss, D., Aiello, G., Chavan, R., Cirant, S., deBaar, M., Farina, D., Gantenbein, G., Goodman, T., Henderson, M., Kasparek, W., Kleefeldt, K., Landis, J.D., Meier, A., Moro, A., Platania, P., Plaum, B., Poli, E., Ramponi, G., Ronden, D., Saibene, G., Sanchez, F., Sauter, O., Scherer, T., Schreck, S., Serikov, A., Sozzi, C., Spaeh, P., Vaccaro, A., Zohm, H.: Preliminary design of the ITER ECH upper launcher. Fusion Eng. Des. 88(11), 2761–2766 (2013). https://doi.org/10.1016/j.fusengdes.2013.03.040; http://www.sciencedirect.com/science/article/pii/S0920379613003347 Google Scholar
  105. 105.
    Strauss, D., Aiello, G., Bruschi, A., Chavan, R., Farina, D., Figini, L., Gagliardi, M., Garcia, V., Goodman, T., Grossetti, G., Heemskerk, C., Henderson, M., Kasparek, W., Krause, A., Landis, J.D., Meier, A., Moro, A., Platania, P., Plaum, B., Poli, E., Ronden, D., Saibene, G., Sanchez, F., Sauter, O., Scherer, T., Schreck, S., Serikov, A., Sozzi, C., Spaeh, P., Vaccaro, A., Weinhorst, B.: Progress of the ECRH upper launcher design for ITER. Fusion Eng. Des. 89(7), 1669–1673 (2014). Proceedings of the 11th International Symposium on Fusion Nuclear Technology-11 (ISFNT-11) Barcelona, Spain, 15–20 September 2013, https://doi.org/10.1016/j.fusengdes.2014.02.045; http://www.sciencedirect.com/science/article/pii/S0920379614001422 Google Scholar
  106. 106.
    Swain, D., Goulding, R., Rasmussen, D.: Status of ITER ICH matching system design. AIP Conf. Proc. 1187(1), 293–296 (2009). http://aip.scitation.org/doi/abs/10.1063/1.3273751 Google Scholar
  107. 107.
    Swanson, D.: Theory of Mode Conversion and Tunneling in Inhomogeneous Plasmas. A Wiley-Interscience publication. Wiley, New York (1998). https://books.google.com/books?id=ZakemvM28ssC Google Scholar
  108. 108.
    Sweetman, D.R.: The dissociation of fast H\(_2^+\) ions by hydrogen. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 256(1286), 416–426 (1960). https://doi.org/10.1098/rspa.1960.0116; http://rspa.royalsocietypublishing.org/content/256/1286/416
  109. 109.
    Sweetman, D.: Ignition condition in tokamak experiments and role of neutral injection heating. Nucl.Fusion 13(2), 157 (1973). http://stacks.iop.org/0029-5515/13/i=2/a=002 Google Scholar
  110. 110.
    Taylor, G., Bonoli, P.T., Green, D.L., Harvey, R.W., Hosea, J.C., Jaeger, E.F., LeBlanc, B.P., Maingi, R., Phillips, C.K., Ryan, P.M., Valeo, E.J., Wilson, J.R., Wright, J.C.: HHFW heating and current drive studies of NSTX H-mode plasmas. AIP Conf. Proc. 1406(1), 325–332 (2011). http://aip.scitation.org/doi/abs/10.1063/1.3664985 Google Scholar
  111. 111.
    Trubnikov, B.A.: Particle interaction in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 105–204. Consultants Bureau, New York (1965)Google Scholar
  112. 112.
    Twiss, R.Q.: Radiation transfer and the possibility of negative absorption in radio astronomy. Aust. J. Phys. 11, 564 (1958). https://doi.org/10.1071/PH580564 Google Scholar
  113. 113.
    Uo, K., Iiyoshi, A., Akimune, H., Obiki, T., Morimoto, S., Wakatani, M., Sasaki, A., Kondo, K., Motojima, O., Sato, M., Mutoh, T., Ohtake, I., Nakasuga, M., Mizuuchi, T., Kinoshita, S., Hanatani, K., Amano, T., Hamada, S.: RF heating experiments on heliotron devices and analysis of equilibrium and stability of straight helical heliotron plasma. In: Plasma Physics and Controlled Nuclear Fusion Research 1978, vol. 2, pp. 323–334 (1979)Google Scholar
  114. 114.
    Verdeyen, J.T.: Laser Electronics, 2nd edn. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  115. 115.
    Wasow, W.: A study of the solutions of the differential equation y ′′′′ + λ 2(xy ′′ + y) = 0 for large values of λ. Ann. Math. 52(2), 350–361 (1950). http://www.jstor.org/stable/1969474
  116. 116.
    Watson, G.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press (1995). https://books.google.com/books?id=Mlk3FrNoEVoC zbMATHGoogle Scholar
  117. 117.
    Weinberg, S.: Eikonal method in magnetohydrodynamics. Phys. Rev. 126, 1899–1909 (1962). https://link.aps.org/doi/10.1103/PhysRev.126.1899 zbMATHGoogle Scholar
  118. 118.
    Weitzner, H., Batchelor, D.B.: Conversion between cold plasma modes in an inhomogeneous plasma. Phys. Fluids 22(7), 1355–1358 (1979). http://aip.scitation.org/doi/abs/10.1063/1.862747 zbMATHGoogle Scholar
  119. 119.
    Williams, J.F., Dunbar, D.N.F.: Charge exchange and dissociation cross sections for \({\mathrm {H}}_{1}^{+}\), \({\mathrm {H}}_{2}^{+}\), and \({\mathrm {H}}_{3}^{+}\) ions of 2- to 50-kev energy incident upon hydrogen and the inert gases. Phys. Rev. 149, 62–69 (1966). https://link.aps.org/doi/10.1103/PhysRev.149.62 Google Scholar
  120. 120.
    Witherspoon, F., Prager, S., Sprott, J.: Shear Alfvén resonances in Tokapole II. In: Gormezano, C., Leotta, G., Sindoni, E. (eds.) Heating in Toroidal Plasmas 1982, pp. 197–201. Pergamon, Oxford (1982). https://doi.org/10.1016/B978-1-4832-8428-6.50029-1; http://www.sciencedirect.com/science/article/pii/B9781483284286500291 Google Scholar
  121. 121.
    Wong, K.L., Horton, R., Ono, M.: Current generation by unidirectional lower hybrid waves in the ACT-1 toroidal device. Phys. Rev. Lett. 45, 117–120 (1980). https://link.aps.org/doi/10.1103/PhysRevLett.45.117 Google Scholar
  122. 122.
    Wong, R.K., Morse, E.C.: Study of a quasi-optical electron cyclotron maser with output coupling mirrors. Int. J. Electron. 69(2), 291–303 (1990). http://dx.doi.org/10.1080/00207219008920314 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Edward Morse
    • 1
  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations