Skip to main content

Modeling and Understanding Intrinsic Characteristics of Human Mobility

  • Chapter
  • First Online:
Handbook of Mobile Data Privacy

Abstract

Humans are intrinsically social creatures and our mobility is central to understanding how our societies grow and function. Movement allows us to congregate with our peers, access things we need, and exchange information. Human mobility has huge impacts on topics like urban and transportation planning, social and biologic spreading, and economic outcomes. Modeling these processes has however been hindered so far by a lack of data. This is radically changing with the rise of ubiquitous devices. In this chapter, we discuss recent progress deriving insights from the massive, high resolution data sets collected from mobile phone and other devices. We begin with individual mobility, where empirical evidence and statistical models have shown important intrinsic and universal characteristics about our movement: we as human are fundamentally slow to explore new places, relatively predictable, and mostly unique. We then explore methods of modeling aggregate movement of people from place to place and discuss how these estimates can be used to understand and optimize transportation infrastructure. Finally, we highlight applications of these findings to the dynamics of disease spread, social networks, and economic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    United Nations Department of Economic and Social Affairs—World Urbanization Prospects—2014 Update. http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf.

  2. 2.

    http://www.worldpop.org.uk/ebola/.

  3. 3.

    GSMA European Mobile Industry Observatory 2011. http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf.

  4. 4.

    ITU (2013). ICT facts and figures. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf.

  5. 5.

    Lookout (2010). Introducing the app genome project. https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/.

  6. 6.

    Hubway Data Visualization Challenge (2012). http://hubwaydatachallenge.org/.

  7. 7.

    New York taxi details can be extracted from anonymized data, researchers say (2014). http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn.

  8. 8.

    Flowing data—where people run in major cities. http://flowingdata.com/2014/02/05/where-people-run/.

  9. 9.

    Cell-Phone Data Might Help Predict Ebola’s Spread (2014). http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/.

References

  1. Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland. Social fMRI: Investigating and shaping social mechanisms in the real world. In Pervasive and Mobile Computing, volume 7, pages 643–659, 2011.

    Google Scholar 

  2. Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can: improving geographical prediction with social and spatial proximity. In Proceedings of the 19th international conference on World wide web, pages 61–70, 2010.

    Google Scholar 

  3. Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J Ramasco, and Alessandro Vespignani. Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America, 106(51):21484–9, December 2009.

    Google Scholar 

  4. Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J Ramasco, and Alessandro Vespignani. Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America, 106(51):21484–9, December 2009.

    Google Scholar 

  5. Moshe E. Ben-Akiva and Steven R. Lerman. Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, 1985.

    Google Scholar 

  6. Luís M a Bettencourt. The origins of scaling in cities. Science, 340:1438–41, 2013.

    Article  MathSciNet  Google Scholar 

  7. Luís M A Bettencourt, José Lobo, Dirk Helbing, Christian Kühnert, and Geoffrey B West. Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America, 104(17):7301–6, April 2007.

    Google Scholar 

  8. D Brockmann, L Hufnagel, and T Geisel. The scaling laws of human travel. Nature, 439:462–465, 2006.

    Article  Google Scholar 

  9. Zhiyuan Cheng, James Caverlee, Kyumin Lee, and Daniel Z. Sui. Exploring Millions of Footprints in Location Sharing Services. In ICWSM, pages 81–88, 2011.

    Google Scholar 

  10. Raj Chetty, Nathaniel Hendren, Patrick Kline, and Emmanuel Saez. Where is the Land of Opportunity? The Geography of Intergenerational Mobility in the United States. January 2014.

    Google Scholar 

  11. Albert M. L. (Albert Man Loon) Ching. A user-flocksourced bus intelligence system for Dhaka, 2012.

    Google Scholar 

  12. Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining KDD 11, KDD ’11, page 1082. ACM Press, 2011.

    Google Scholar 

  13. Vittoria Colizza, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences of the United States of America, 103(7):2015–20, February 2006.

    Article  Google Scholar 

  14. C.D.a Cottrill, F.C.a Pereira, F.a Zhao, I.F.b Dias, H.B.c Lim, M.E.d Ben-Akiva, and P.C.d Zegras. Future mobility survey. Transportation Research Record, (2354):59–67, 2013.

    Article  Google Scholar 

  15. Yves-Alexandre de Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D Blondel. Unique in the Crowd: The privacy bounds of human mobility. Nature Scientific Reports, 3:1376, 2013.

    Google Scholar 

  16. Yves Alexandre De Montjoye, Erez Shmueli, Samuel S. Wang, and Alex Sandy Pentland. OpenPDS: Protecting the privacy of metadata through SafeAnswers. PLoS One, 9, 2014.

    Google Scholar 

  17. Yves-Alexandre de Montjoye, Zbigniew Smoreda, Romain Trinquart, Cezary Ziemlicki, and Vincent D. Blondel. D4D-Senegal: The Second Mobile Phone Data for Development Challenge. July 2014.

    Google Scholar 

  18. Giusy Di lorenzo, Marco Luca Sbodio, Francesco Calabrese, Michele Berlingerio, Rahul Nair, and Fabio Pinelli. AllAboard. In Proceedings of the 19th international conference on Intelligent User Interfaces - IUI ’14, pages 335–340, New York, New York, USA, February 2014. ACM Press.

    Google Scholar 

  19. Manlio De Domenico. Interdependence and Predictability of Human Mobility and Social Interactions. csbhamacuk, 2012, 2012.

    Google Scholar 

  20. Nathan Eagle and Alex Pentland. Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10:255–268, 2006.

    Article  Google Scholar 

  21. Nathan Eagle and Alex Sandy Pentland. Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology, 63:1057–1066, 2009.

    Google Scholar 

  22. Matthew L. Freedman. Job hopping, earnings dynamics, and industrial agglomeration in the software publishing industry. Journal of Urban Economics, 64:590–600, 2008.

    Article  Google Scholar 

  23. Marta C González, César A Hidalgo, and Albert-László Barabási. Understanding individual human mobility patterns. Nature, 453(7196):779–782, 2008.

    Article  Google Scholar 

  24. Przemyslaw A. Grabowicz, Jose J. Ramasco, Bruno Goncalves, and Victor M. Eguiluz. Entangling mobility and interactions in social media. page 16, July 2013.

    Google Scholar 

  25. Tami Gurley and Donald Bruce. The effects of car access on employment outcomes for welfare recipients. Journal of Urban Economics, 58:250–272, 2005.

    Article  Google Scholar 

  26. Randolph W. Hall, editor. Handbook of Transportation Science, volume 23 of International Series in Operations Research & Management Science. Springer US, Boston, MA, 1999.

    Google Scholar 

  27. Walter G. Hansen. How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25(2):73–76, May 1959.

    Article  Google Scholar 

  28. Juan C. Herrera, Daniel B. Work, Ryan Herring, X. Ban, Quinn Jacobson, and Alexandre M. Bayen. Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation Research Part C: Emerging Technologies, 18:568–583, 2010.

    Article  Google Scholar 

  29. C Herrera-Yagüe, C M Schneider, Z Smoreda, T Couronné, P J Zufiria, and M C González. The elliptic model for communication fluxes. Journal of Statistical Mechanics: Theory and Experiment, 2014(4):P04022, April 2014.

    Article  MathSciNet  Google Scholar 

  30. Ryan Herring, Tania Abou Nasr, Amin Abdel Khalek, and Alexandre Bayen. Using Mobile Phones to Forecast Arterial Traffic through Statistical Learning. Electrical Engineering, 59:1–22, 2010.

    Google Scholar 

  31. Md. Shahadat Iqbal, Charisma F. Choudhury, Pu Wang, and Marta C. González. Development of origin destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40:63–74, March 2014.

    Google Scholar 

  32. Jerald Jariyasunant. Improving Traveler Information and Collecting Behavior Data with Smartphones. PhD thesis, 2012.

    Google Scholar 

  33. H.S. Kim. QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine, 41(1):86–92, January 2003.

    Article  Google Scholar 

  34. Sunwoong Kim. Labor Specialization and the Extent of the Market, 1989.

    Google Scholar 

  35. Eleni Kosta, Hans Graux, and Jos Dumortier. Collection and Storage of Personal Data: A Critical View on Current Practices in the Transportation Sector. In Privacy Technologies and Policy SE - 10, volume 8319, pages 157–176. 2014.

    Google Scholar 

  36. John Krumm, Eric Horvitz, Paul Dourish, and Adrian Friday. Predestination: Inferring Destinations from Partial Trajectories. UbiComp 2006: Ubiquitous Computing, 4206:243–260, 2006.

    Article  Google Scholar 

  37. David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-Laszlo Barabasi, Devon Brewer, Nicholas Christakis, Noshir Contractor, James Fowler, Myron Gutmann, Tony Jebara, Gary King, Michael Macy, Deb Roy, and Marshall Van Alstyne. Computational Social Science. Science, 323(5915):721–723, 2009.

    Article  Google Scholar 

  38. Kyunghan Lee Kyunghan Lee, Seongik Hong Seongik Hong, Seong Joon Kim Seong Joon Kim, Injong Rhee Injong Rhee, and Song Chong Song Chong. SLAW: A New Mobility Model for Human Walks. IEEE INFOCOM 2009, 2009.

    Google Scholar 

  39. David Liben-Nowell, Jasmine Novak, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Geographic routing in social networks. Proceedings of the National Academy of Sciences of the United States of America, 102(33):11623–11628, 2005.

    Article  Google Scholar 

  40. Tong Liu, Paramvir Bahl, and Imrich Chlamtac. Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications, 16:922–935, 1998.

    Article  Google Scholar 

  41. Michael G. McNally. The Four Step Model. Center for Activity Systems Analysis, November 2008.

    Google Scholar 

  42. Sandro Meloni, Nicola Perra, Alex Arenas, Sergio Gómez, Yamir Moreno, and Alessandro Vespignani. Modeling human mobility responses to the large-scale spreading of infectious diseases. Scientific reports, 1:62, January 2011.

    Article  Google Scholar 

  43. Kim Minkyong, David Kotz, and Kim Songkuk. Extracting a mobility model from real user traces. In Proceedings - IEEE INFOCOM, 2006.

    Google Scholar 

  44. Christos Nicolaides, Luis Cueto-Felgueroso, Marta C. González, and Ruben Juanes. A metric of influential spreading during contagion dynamics through the air transportation network. PLoS One, 7, 2012.

    Google Scholar 

  45. Juan de Dios Ortúzar and Luis G. Willumsen. Modelling Transport. 2011.

    Google Scholar 

  46. Wei Pan, Gourab Ghoshal, Coco Krumme, Manuel Cebrian, and Alex Pentland. Urban characteristics attributable to density-driven tie formation. Nature communications, 4:1961, 2013.

    Article  Google Scholar 

  47. Gyan Ranjan, Hui Zang, Zhi-Li Zhang, and Jean Bolot. Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mobile Computing and Communications Review, 16(3):33–44, 2012.

    Article  Google Scholar 

  48. Adam Sadilek and John Krumm. Far Out: Predicting Long-Term Human Mobility. AAAI, pages 814–820, 2012.

    Google Scholar 

  49. Samitha Samaranayake, Sebastien Blandin, and Alexandre Bayen. Learning the dependency structure of highway networks for traffic forecast. In Proceedings of the IEEE Conference on Decision and Control, pages 5983–5988, 2011.

    Google Scholar 

  50. Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven Strogatz, and Carlo Ratti. Taxi pooling in New York City: a network-based approach to social sharing problems. page 12, October 2013.

    Google Scholar 

  51. Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T. Campbell. NextPlace: A spatio-temporal prediction framework for pervasive systems. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6696 LNCS, pages 152–169, 2011.

    Google Scholar 

  52. Christian M Schneider, Vitaly Belik, Thomas Couronné, Zbigniew Smoreda, and Marta C González. Unravelling daily human mobility motifs. Journal of the Royal Society, Interface / the Royal Society, 10(84):20130246, 2013.

    Google Scholar 

  53. Filippo Simini, Marta C González, Amos Maritan, and Albert-László Barabási. A universal model for mobility and migration patterns. Nature, 484(7392):8–12, 2012.

    Article  Google Scholar 

  54. Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási. Modelling the scaling properties of human mobility. Nature Physics, 6(10):818–823, September 2010.

    Article  Google Scholar 

  55. Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of predictability in human mobility. Science, 327(5968):1018–1021, 2010.

    Article  MathSciNet  Google Scholar 

  56. Heinz Spiess. Technical Note—Conical Volume-Delay Functions. Transportation Science, 24(2):153–158, May 1990.

    Article  Google Scholar 

  57. L. Sun, K. W. Axhausen, D.-H. Lee, and X. Huang. Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 110(34):13774–13779, August 2013.

    Article  Google Scholar 

  58. Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden, Hari Balakrishnan, Sivan Toledo, and Jakob Eriksson. VTrack: accurate, energy-aware road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems - SenSys ’09, pages 85–98, 2009.

    Google Scholar 

  59. Jameson L Toole, Meeyoung Cha, and Marta C González. Modeling the adoption of innovations in the presence of geographic and media influences. PLoS One, 7(1):e29528, 2012.

    Article  Google Scholar 

  60. Jameson L. Toole, Carlos Herrera-Yaqüe, Christian M. Schneider, and Marta C. González. Coupling human mobility and social ties. Journal of The Royal Society Interface, 12(105), 2015.

    Google Scholar 

  61. Pauline van den Berg, Theo A. Arentze, and Harry J. P. Timmermans. Size and Composition of Ego-Centered Social Networks and Their Effect on Geographic Distance and Contact Frequency, 2010.

    Google Scholar 

  62. Jingyuan Wang, Yu Mao, Jing Li, Chao Li, Zhang Xiong, and Wen-Xu Wang. Predictability of road traffic and congestion in urban areas. July 2014.

    Google Scholar 

  63. Pu Wang, Timothy Hunter, Alexandre M Bayen, Katja Schechtner, and Marta C González. Understanding road usage patterns in urban areas. Scientific reports, 2:1001, January 2012.

    Google Scholar 

  64. Pu Wang, Like Liu, Xiamiao Li, Guanliang Li, and Marta C González. Empirical study of long-range connections in a road network offers new ingredient for navigation optimization models. New Journal of Physics, 16(1):013012, January 2014.

    Article  Google Scholar 

  65. Amy Wesolowski, Nathan Eagle, Abdisalan M Noor, Robert W Snow, and Caroline O Buckee. The impact of biases in mobile phone ownership on estimates of human mobility. Journal of the Royal Society, Interface / the Royal Society, 10(81):20120986, April 2013.

    Google Scholar 

  66. Amy Wesolowski, Nathan Eagle, Andrew J Tatem, David L Smith, Abdisalan M Noor, Robert W Snow, and Caroline O Buckee. Quantifying the impact of human mobility on malaria. Science (New York, N.Y.), 338(6104):267–70, October 2012.

    Google Scholar 

  67. Yingxiang Yang, Carlos Herrera, Nathan Eagle, and Marta C González. Limits of predictability in commuting flows in the absence of data for calibration. Scientific reports, 4:5662, January 2014.

    Google Scholar 

  68. Jeffrey J. Yankow. Why do cities pay more? An empirical examination of some competing theories of the urban wage premium. Journal of Urban Economics, 60:139–161, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Alexandre de Montjoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toole, J.L., Montjoye, YA.d., González, M.C., Pentland, A.(. (2018). Modeling and Understanding Intrinsic Characteristics of Human Mobility. In: Gkoulalas-Divanis, A., Bettini, C. (eds) Handbook of Mobile Data Privacy . Springer, Cham. https://doi.org/10.1007/978-3-319-98161-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98161-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98160-4

  • Online ISBN: 978-3-319-98161-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics