Skip to main content

Limbal Stem Cells and the Treatment of Limbal Stem Cell Deficiency

  • Chapter
  • First Online:
  • 589 Accesses

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Many organs (skin, stomach, intestines, colon, and eye) possess an epithelial layer that is short-lived and rapidly lost, requiring a source of adult stem cells that produces a continual supply of epithelial cells to replenish the lost cells. Maintaining these rapidly self-renewing epithelial surfaces during normal homeostasis is therefore dependent upon the health of the adult stem cell population. One important challenge in regenerative medicine is replacing these adult stem cells when they are eliminated following an injury or disease. The eye contains two highly specialized stratified squamous epithelia, the conjunctival epithelium and the corneal epithelium, which are separated by the limbal epithelium (Fig. 5.1). A healthy corneal epithelium is essential for maintaining a clear cornea and normal vision. The limbus contains a small subpopulation of rare LSC (Limbal Stem Cells) that continually repopulates the corneal epithelium. Patients with a LSCD (Limbal Stem Cell Deficiency) are unable to regenerate the corneal epithelium, resulting in migration of the conjunctival epithelium over the corneal stroma, called “conjunctivalization,” that triggers neovascularization, chronic inflammation, and corneal opacity. A complete LSCD results in the total loss of the corneal epithelium and blindness due to an irreversibly opaque cornea. The extent of LSC loss can range from partial to complete and can be either unilateral or bilateral with a corresponding range in the loss of vision. LSCD can be caused by a variety of injuries or diseases: chemical or thermal burns [1], Stevens-Johnson syndrome [2, 3], aniridia [3], contact lens-induced keratopathy [4], multiple surgeries [5], cryotherapy of the limbus [5], chronic peripheral corneal inflammation [6], and lysosomal storage disease. However, corneal burns are by far the most frequent cause of a LSCD [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shanbhag, S. S., Saeed, H. N., Paschalis, E. I., & Chodosh, J. (2017). Keratolimbal allograft for limbal stem cell deficiency after severe corneal chemical injury: A systematic review. The British Journal of Ophthalmology, pii, bjophthalmol–2017–311249. https://doi.org/10.1136/bjophthalmol-2017-311249

  2. Kim, Y. H., Kim, D. H., Shin, E. J., Lee, H. J., Wee, W. R., Jeon, S., et al. (2016). Comparative analysis of substrate-free cultured oral mucosal epithelial cell sheets from cells of subjects with and without Stevens- Johnson syndrome for use in ocular surface reconstruction. PLoS One, 11, e0147548. https://doi.org/10.1371/journal.pone.0147548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shortt, A. J., Bunce, C., Levis, H. J., Blows, P., Dore, C. J., Vernon, A., et al. (2014). Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the clinical outcome assessment in surgical trials assessment tool. Stem Cells Translational Medicine, 3, 265–275. https://doi.org/10.5966/sctm.2013-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossen, J., Amram, A., Milani, B., Park, D., Harthan, J., Joslin, C., et al. (2016). Contact lens-induced limbal stem cell deficiency. The Ocular Surface, 14, 419–434. https://doi.org/10.1016/j.jtos.2016.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vazirani, J., Nair, D., Shanbhag, S., Wurity, S., Ranjan, A., & Sangwan, V. (2018). Limbal stem cell deficiency-demography and underlying causes. American Journal of Ophthalmology, 188, 99–103. https://doi.org/10.1016/j.ajo.2018.01.020

    Article  PubMed  Google Scholar 

  6. Sotozono, C., Inatomi, T., Nakamura, T., Koizumi, N., Yokoi, N., Ueta, M., et al. (2014). Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmologica, 92, e447–e453. https://doi.org/10.1111/aos.12397

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology. https://doi.org/10.1016/S0161-6420(89)32833-8

    Article  Google Scholar 

  8. Pellegrini, G., Ardigò, D., Milazzo, G., Iotti, G., Guatelli, P., Pelosi, D., et al. (2018). Navigating market authorization: The path holoclar took to become the first stem cell product approved in the European Union. Stem Cells Translational Medicine, 7, 146–154. https://doi.org/10.1002/sctm.17-0003

    Article  PubMed  Google Scholar 

  9. Barker, N., Bartfeld, S., & Clevers, H. (2010). Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell, 7, 15–15. https://doi.org/10.1016/j.stem.2010.11.016

    Article  CAS  Google Scholar 

  10. Richardson, A., Lobo, E. P., Delic, N. C., Myerscough, M. R., Lyons, J. G., Wakefield, D., et al. (2017). Keratin-14-positive precursor cells spawn a population of migratory corneal epithelia that maintain tissue mass throughout life. Stem Cell Reports, 9, 1081–1096. https://doi.org/10.1016/j.stemcr.2017.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kasetti, R. B., Gaddipati, S., Tian, S., Xue, L., Kao, W. W., Lu, Q., et al. (2016). Study of corneal epithelial progenitor origin and the Yap1 requirement using keratin 12 lineage tracing transgenic mice. Scientific Reports, 6, 35202. https://doi.org/10.1038/srep35202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dora, N. J., Hill, R. E., Collinson, J. M., & West, J. D. (2015). Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence. Stem Cell Research, 15(3), 665–677. https://doi.org/10.1016/j.scr.2015.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez, G., Sasamoto, Y., Ksander, B. R., Frank, M. H., & Frank, N. Y. (2018). Limbal stem cells: Identity, developmental origin, and therapeutic potential. Wiley Interdisciplinary Reviews: Developmental Biology, 7, e303. https://doi.org/10.1002/wdev.303

    Article  Google Scholar 

  14. Thoft, R. A. R., & Friend, J. J. (1983). The X, Y, Z hypothesis of corneal epithelial maintenance. Investigative Ophthalmology & Visual Science, 24, 1442–1443.

    CAS  Google Scholar 

  15. Cotsarelis, G., Cheng, S.-Z., Dong, G., Sun, T. T., & Lavker, R. M. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell, 57, 201–209. https://doi.org/10.1016/0092-8674(89)90958-6

    Article  CAS  PubMed  Google Scholar 

  16. Pellegrini, G., Golisano, O., Paterna, P., Lambiase, A., Bonini, S., Rama, P., et al. (1999). Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. The Journal of Cell Biology, 145, 769–782. https://doi.org/10.1083/jcb.145.4.769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349, 990–993. https://doi.org/10.1016/S0140-6736(96)11188-0

    Article  CAS  PubMed  Google Scholar 

  18. Pellegrini, G., Dellambra, E., Golisano, O., Martinelli, E., Fantozzi, I., Bondanza, S., et al. (2001). p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 3156–3161. https://doi.org/10.1073/pnas.061032098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Iorio, E., Barbaro, V., Ruzza, A., Ponzin, D., Pellegrini, G., & De Luca, M. (2005). Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 102, 9523–9528. https://doi.org/10.1073/pnas.0503437102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melino, G., Memmi, E. M., Pelicci, P. G., & Bernassola, F. (2015). Maintaining epithelial stemness with p63. Science Signaling, 8, re9–re9. https://doi.org/10.1126/scisignal.aaa1033

    Article  CAS  PubMed  Google Scholar 

  21. Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R., & Khavari, P. A. (2006). p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes & Development, 20, 3185–3197. https://doi.org/10.1101/gad.1463206

    Article  CAS  Google Scholar 

  22. Liang, L., Sheha, H., Li, J., & Tseng, S. C. G. (2009). Limbal stem cell transplantation: New progresses and challenges. Eye (London, England), 23, 1946–1953. https://doi.org/10.1038/eye.2008.379

    Article  CAS  Google Scholar 

  23. Pellegrini, G., Rama, P., Matuska, S., Lambiase, A., Bonini, S., Pocobelli, A., et al. (2013). Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regenerative Medicine, 8, 553–567. https://doi.org/10.2217/rme.13.43

    Article  CAS  PubMed  Google Scholar 

  24. Shortt, A. J., Tuft, S. J., & Daniels, J. T. (2010). Ex vivo cultured limbal epithelial transplantation. A clinical perspective. The Ocular Surface, 8, 80–90.

    Article  PubMed  Google Scholar 

  25. Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine, 363, 147–155. https://doi.org/10.1056/NEJMoa0905955

    Article  CAS  PubMed  Google Scholar 

  26. Szabó, D. J., Noer, A., Nagymihály, R., Josifovska, N., Andjelic, S., Vereb, Z., et al. (2015). Long-term cultures of human cornea limbal explants form 3D structures ex vivo–implications for tissue engineering and clinical applications. PLoS One, 10, e0143053. https://doi.org/10.1371/journal.pone.0143053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheung, A. Y., & Holland, E. J. (2017). Keratolimbal allograft. Current Opinion in Ophthalmology, 28, 377–381. https://doi.org/10.1097/ICU.0000000000000374

    Article  PubMed  Google Scholar 

  28. Basu, S., Sureka, S. P., Shanbhag, S. S., Kethiri, A. R., Singh, V., & Sangwan, V. S. (2016). Simple limbal epithelial transplantation: Long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology, 123, 1000–1010. https://doi.org/10.1016/j.ophtha.2015.12.042

    Article  PubMed  Google Scholar 

  29. Sasine, J. P., Yeo, K. T., & Chute, J. P. (2017). Concise review: Paracrine functions of vascular niche cells in regulating hematopoietic stem cell fate. Stem Cells Translational Medicine, 6, 482–489. https://doi.org/10.5966/sctm.2016-0254

    Article  CAS  PubMed  Google Scholar 

  30. González, S., Chen, L., & Deng, S. X. (2017). Comparative study of xenobiotic-free media for the cultivation of human limbal epithelial stem/progenitor cells. Tissue Engineering. Part C, Methods, 23, 219–227. https://doi.org/10.1089/ten.tec.2016.0388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mei, H., Nakatsu, M. N., Baclagon, E. R., & Deng, S. X. (2014). Frizzled 7 maintains the undifferentiated state of human limbal stem/progenitor cells. Stem Cells, 32, 938–945. https://doi.org/10.1002/stem.1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakatsu, M. N., Ding, Z., Ng, M. Y., Truong, T. T., Yu, F., & Deng, S. X. (2011). Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Investigative Ophthalmology & Visual Science, 52, 4734–4741. https://doi.org/10.1167/iovs.10-6486

    Article  CAS  Google Scholar 

  33. Chan, E., Le, Q., Codriansky, A., Hong, J., Xu, J., & Deng, S. X. (2016). Existence of normal limbal epithelium in eyes with clinical signs of total limbal stem cell deficiency. Cornea, 35, 1483–1487. https://doi.org/10.1097/ICO.0000000000000914

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le, Q., Xu, J., & Deng, S. X. (2018). The diagnosis of limbal stem cell deficiency. The Ocular Surface, 16, 58–69. https://doi.org/10.1016/j.jtos.2017.11.002

    Article  PubMed  Google Scholar 

  35. Zarei-Ghanavati, S., Ramirez-Miranda, A., & Deng, S. X. (2011). Limbal lacuna: A novel limbal structure detected by in vivo laser scanning confocal microscopy. Ophthalmic Surgery, Lasers & Imaging, 42, e129–e131. https://doi.org/10.3928/15428877-20111201-07

    Article  Google Scholar 

  36. Holland, E. J., Mogilishetty, G., Skeens, H. M., Hair, D. B., Neff, K. D., Biber, J. M., et al. (2012). Systemic immunosuppression in ocular surface stem cell transplantation: Results of a 10-year experience. Cornea, 31, 655–661. https://doi.org/10.1097/ICO.0b013e31823f8b0c

    Article  PubMed  Google Scholar 

  37. Eslani, M., Haq, Z., Movahedan, A., Moss, A., Baradaran-Rafii, A., Mogilishetty, G., et al. (2017). Late acute rejection after allograft limbal stem cell transplantation: Evidence for long-term donor survival. Cornea, 36, 26–31. https://doi.org/10.1097/ICO.0000000000000970

    Article  PubMed  PubMed Central  Google Scholar 

  38. Han, E. S., Wee, W. R., Lee, J. H., & Kim, M. K. (2011). Long-term outcome and prognostic factor analysis for keratolimbal allografts. Graefe’s Archive for Clinical and Experimental Ophthalmology, 249, 1697–1704. https://doi.org/10.1007/s00417-011-1760-3

    Article  PubMed  Google Scholar 

  39. Lin, C. M., & Gill, R. G. (2016). Direct and indirect allograft recognition: Pathways dictating graft rejection mechanisms. Current Opinion in Organ Transplantation, 21, 40–44. https://doi.org/10.1097/MOT.0000000000000263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Almoguera, B., Shaked, A., & Keating, B. J. (2014). Transplantation genetics: Current status and prospects. American Journal of Transplantation, 14, 764–778. https://doi.org/10.1111/ajt.12653

    Article  CAS  PubMed  Google Scholar 

  41. Djalilian, A. R., Mahesh, S. P., Koch, C. A., Nussenblatt, R. B., Shen, D., Zhuang, Z., et al. (2005). Survival of donor epithelial cells after limbal stem cell transplantation. Investigative Ophthalmology & Visual Science, 46, 803–807. https://doi.org/10.1167/iovs.04-0575

    Article  Google Scholar 

  42. Medawar, P. B. (1948). Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology, 29, 58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Streilein, J. W. (2003). Ocular immune privilege: Therapeutic opportunities from an experiment of nature. Nature Reviews. Immunology, 3, 879–889. https://doi.org/10.1038/nri1224

    Article  CAS  PubMed  Google Scholar 

  44. Niederkorn, J. Y. (2006). See no evil, hear no evil, do no evil: The lessons of immune privilege. Nature Immunology, 7, 354–359. https://doi.org/10.1038/ni1328

    Article  CAS  PubMed  Google Scholar 

  45. Louveau, A., Harris, T. H., & Kipnis, J. (2015). Revisiting the mechanisms of CNS immune privilege. Trends in Immunology, 36, 569–577. https://doi.org/10.1016/j.it.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Engelhardt, B., Vajkoczy, P., & Weller, R. O. (2017). The movers and shapers in immune privilege of the CNS. Nature Immunology, 18, 123–131. https://doi.org/10.1038/ni.3666

    Article  CAS  PubMed  Google Scholar 

  47. Spadoni, I., Fornasa, G., & Rescigno, M. (2017). Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nature Reviews. Immunology, 17, 761–773. https://doi.org/10.1038/nri.2017.100

    Article  CAS  PubMed  Google Scholar 

  48. Tan, D. T. H., Dart, J. K. G., Holland, E. J., & Kinoshita, S. (2012). Corneal transplantation. Lancet, 379, 1749–1761. https://doi.org/10.1016/S0140-6736(12)60437-1

    Article  PubMed  Google Scholar 

  49. Amouzegar, A., Chauhan, S. K., & Dana, R. (2016). Alloimmunity and tolerance in corneal transplantation. Journal of Immunology, 196, 3983–3991. https://doi.org/10.4049/jimmunol.1600251

    Article  CAS  Google Scholar 

  50. Niederkorn, J. Y. (2013). Corneal transplantation and immune privilege. International Reviews of Immunology, 32, 57–67. https://doi.org/10.3109/08830185.2012.737877

    Article  CAS  PubMed  Google Scholar 

  51. Casiraghi, F., Perico, N., & Remuzzi, G. (2017). Mesenchymal stromal cells for tolerance induction in organ transplantation. Human Immunology. https://doi.org/10.1016/j.humimm.2017.12.008

    Article  PubMed  Google Scholar 

  52. Hua, F., Chen, Y., Yang, Z., Teng, X., Huang, H., & Shen, Z. (2018). Protective action of bone marrow mesenchymal stem cells in immune tolerance of allogeneic heart transplantation by regulating CD45RB+ dendritic cells. Clinical Transplantation, 6, e13231. https://doi.org/10.1111/ctr.13231

    Article  CAS  Google Scholar 

  53. Zou, L., Barnett, B., Safah, H., Larussa, V. F., Evdemon-Hogan, M., Mottram, P., et al. (2004). Bone marrow is a reservoir for CD4 +CD25 +regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Research, 64, 8451–8455. https://doi.org/10.1158/0008-5472.CAN-04-1987

    Article  CAS  PubMed  Google Scholar 

  54. Fujisaki, J., Wu, J., Carlson, A. L., Silberstein, L., Putheti, P., Larocca, R., et al. (2011). In vivo imaging of Treg cells providing 888 immune privilege to the haematopoietic stem-cell niche. Nature, 474, 216–219. https://doi.org/10.1038/nature10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirata, Y., Furuhashi, K., Ishii, H., Li, H. W., Pinho, S., Ding, L., et al. (2018). CD150highbone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell, 22, 445–453.e5. https://doi.org/10.1016/j.stem.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ksander, B. R., Kolovou, P. E., Wilson, B. J., Saab, K. R., Guo, Q., Ma, J., et al. (2014). ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature, 511, 353–357. https://doi.org/10.1038/nature13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schatton, T., Yang, J., Kleffel, S., Uehara, M., Barthel, S. R., Schlapbach, C., et al. (2015). ABCB5 identifies immunoregulatory dermal cells. Cell Reports, 12, 1564–1574. https://doi.org/10.1016/j.celrep.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  58. Sharpe, A. H., & Pauken, K. E. (2018). The diverse functions of the PD1 inhibitory pathway. Nature Reviews. Immunology, 18, 153–167. https://doi.org/10.1038/nri.2017.108

    Article  CAS  PubMed  Google Scholar 

  59. Hori, J., Wang, M., Miyashita, M., Tanemoto, K., Takahashi, H., Takemori, T., et al. (2006). B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. Journal of Immunology, 177, 5928–5935.

    Article  CAS  Google Scholar 

  60. Shen, L., Jin, Y., Freeman, G. J., Sharpe, A. H., & Dana, M. R. (2007). The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. Journal of Immunology, 179, 3672–3679.

    Article  CAS  Google Scholar 

  61. Hori, J., & Streilein, J. W. (2001). Dynamics of donor cell persistence and recipient cell replacement in orthotopic corneal allografts in mice. Investigative Ophthalmology & Visual Science, 42, 1820–1828.

    CAS  Google Scholar 

  62. Hori, J., & Streilein, J. W. (2003). Survival in high-risk eyes of epithelium-deprived orthotopic corneal allografts reconstituted in vitro with syngeneic epithelium. Investigative Ophthalmology & Visual Science, 44, 658–664.

    Article  Google Scholar 

  63. Hori, J. (2008). Mechanisms of immune privilege in the anterior segment of the eye: What we learn from corneal transplantation. Journal of Ocular Biology, Diseases, and Informatics, 1, 94–100. https://doi.org/10.1007/s12177-008-9010-6

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ambati, B. K., Nozaki, M., Singh, N., Takeda, A., Jani, P. D., Suthar, T., et al. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature, 443, 993–997. https://doi.org/10.1038/nature05249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R., & Ferguson, T. A. (1995). Fas ligand-induced apoptosis as a mechanism of immune privilege. Science, 270, 1189–1192.

    Article  CAS  PubMed  Google Scholar 

  66. Stuart, P. M., Griffith, T. S., Usui, N., Pepose, J., Yu, X., & Ferguson, T. A. (1997). CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. The Journal of Clinical Investigation, 99, 396–402. https://doi.org/10.1172/JCI119173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews. Molecular Cell Biology, 17, 183–193. https://doi.org/10.1038/nrm.2016.8

    Article  CAS  PubMed  Google Scholar 

  68. Huang, L., Chen, M., Zhang, W., Sun, X., Liu, B., & Ge, J. (2018). Retinoid acid and taurine promote NeuroD1-induced differentiation of induced pluripotent stem cells into retinal ganglion cells. Molecular and Cellular Biochemistry, 438, 67–76. https://doi.org/10.1007/s11010-017-3114-x

    Article  CAS  PubMed  Google Scholar 

  69. Teotia, P., Van Hook, M. J., Wichman, C. S., Allingham, R. R., Hauser, M. A., & Ahmad, I. (2017). Modeling glaucoma: Retinal ganglion cells generated from induced pluripotent stem cells of patients with SIX6 risk allele show developmental abnormalities. Stem Cells, 35, 2239–2252. https://doi.org/10.1002/stem.2675

    Article  CAS  PubMed  Google Scholar 

  70. Kobayashi, W., Onishi, A., Tu, H. Y., Takihara, Y., Matsumura, M., Tsujimoto, K., et al. (2018). Culture systems of dissociated mouse and human pluripotent stem cell-derived retinal ganglion cells purified by two-step immunopanning. Investigative Ophthalmology & Visual Science, 59, 776–787. https://doi.org/10.1167/iovs.17-22406

    Article  CAS  Google Scholar 

  71. Yokoi, T., Tanaka, T., Matsuzaka, E., Tamalu, F., Watanabe, S. I., Nishina, S., et al. (2017). Effects of neuroactive agents on axonal growth and pathfinding of retinal ganglion cells generated from human stem cells. Scientific Reports, 7, 16757. https://doi.org/10.1038/s41598-017-16727-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramsden, C. M., Powner, M. B., Carr, A.-J. F., Smart, M. J., da Cruz, L., & Coffey, P. J. (2014). Neural retinal regeneration with pluripotent stem cells. Developments in Ophthalmology, 53, 97–110. https://doi.org/10.1159/000357363

    Article  PubMed  Google Scholar 

  73. Boucherie, C., Sowden, J. C., & Ali, R. R. (2011). Induced pluripotent stem cell technology for generating photoreceptors. Regenerative Medicine, 6, 469–479. https://doi.org/10.2217/rme.11.37

    Article  CAS  PubMed  Google Scholar 

  74. Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., et al. (2014). Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2, 205–218. https://doi.org/10.1016/j.stemcr.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leach, L. L., & Clegg, D. O. (2015). Concise review: Making stem cells retinal: Methods for deriving retinal pigment epithelium and implications for patients with ocular disease. Stem Cells, 33, 2363–2373. https://doi.org/10.1002/stem.2010

    Article  PubMed  Google Scholar 

  76. Croze, R. H., & Clegg, D. O. (2014). Differentiation of pluripotent stem cells into retinal pigmented epithelium. Developments in Ophthalmology, 53, 81–96. https://doi.org/10.1159/000357361

    Article  PubMed  Google Scholar 

  77. Westenskow, P. D., Kurihara, T., & Friedlander, M. (2014). Utilizing stem cell-derived RPE cells as a therapeutic intervention for age-related macular degeneration. Advances in Experimental Medicine and Biology, 801, 323–329. https://doi.org/10.1007/978-1-4614-3209-8_41

    Article  PubMed  Google Scholar 

  78. Kamarudin, T. A., Bojic, S., Collin, J., Yu, M., Alharthi, S., Buck, H., et al. (2018). Differences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cells. Stem Cells, 36, 337–348. https://doi.org/10.1002/stem.2750

    Article  CAS  PubMed  Google Scholar 

  79. Zhao, T., Zhang, Z.-N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215. https://doi.org/10.1038/nature10135

    Article  CAS  PubMed  Google Scholar 

  80. de Almeida, P. E., Meyer, E. H., Kooreman, N. G., Diecke, S., Dey, D., Sanchez-Freire, V., et al. (2014). Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nature Communications, 5, 3903. https://doi.org/10.1038/ncomms4903

    Article  CAS  PubMed  Google Scholar 

  81. Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., et al. (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494, 100–104. https://doi.org/10.1038/nature11807

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, T., Zhang, Z.-N., Westenskow, P. D., Todorova, D., Hu, Z., Lin, T., et al. (2015). Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell, 17, 353–359. https://doi.org/10.1016/j.stem.2015.07.021

    Article  CAS  PubMed  Google Scholar 

  83. Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., et al. (2016). Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature, 531, 376–380. https://doi.org/10.1038/nature17000

    Article  CAS  PubMed  Google Scholar 

  84. Ouyang, H., Xue, Y., Lin, Y., Zhang, X., Xi, L., Patel, S., et al. (2014). WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature, 511, 358–361. https://doi.org/10.1038/nature13465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Galindo, S., Herreras, J. M., Lopez-Paniagua, M., Rey, E., de la Mata, A., Plata-Cordero, M., et al. (2017). Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell niche damage. Stem Cells, 35, 2160–2174. https://doi.org/10.1002/stem.2672

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Ksander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ksander, B.R., Frank, M.H., Frank, N.Y. (2018). Limbal Stem Cells and the Treatment of Limbal Stem Cell Deficiency. In: Ballios, B., Young, M. (eds) Regenerative Medicine and Stem Cell Therapy for the Eye. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-98080-5_5

Download citation

Publish with us

Policies and ethics